山西中醫(yī)藥大學(xué)《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
山西中醫(yī)藥大學(xué)《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
山西中醫(yī)藥大學(xué)《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
山西中醫(yī)藥大學(xué)《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
山西中醫(yī)藥大學(xué)《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁山西中醫(yī)藥大學(xué)《中外經(jīng)典紋樣與圖形》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計算機(jī)視覺中的圖像配準(zhǔn)是將不同時間、不同視角或不同傳感器獲取的圖像進(jìn)行對齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進(jìn)行配準(zhǔn),以下關(guān)于圖像配準(zhǔn)方法的描述,哪一項(xiàng)是不正確的?()A.基于特征的圖像配準(zhǔn)方法通過提取圖像中的顯著特征,并進(jìn)行匹配來實(shí)現(xiàn)配準(zhǔn)B.基于灰度的圖像配準(zhǔn)方法直接比較圖像的灰度值,計算相似性度量來完成配準(zhǔn)C.圖像配準(zhǔn)的精度主要取決于特征提取的準(zhǔn)確性和匹配算法的性能D.圖像配準(zhǔn)總是能夠完美地將兩張圖像對齊,不存在任何誤差2、在一個基于計算機(jī)視覺的工業(yè)質(zhì)量檢測系統(tǒng)中,需要檢測產(chǎn)品表面的微小缺陷,如劃痕、凹坑等。由于缺陷的尺寸較小且形態(tài)多樣,以下哪種圖像處理算法可能對缺陷檢測最為有效?()A.邊緣檢測算法B.形態(tài)學(xué)操作C.閾值分割算法D.霍夫變換3、計算機(jī)視覺中的動作識別旨在識別視頻中的人體動作。假設(shè)要對一段監(jiān)控視頻中的人員動作進(jìn)行分類,以下關(guān)于動作識別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復(fù)雜的動作變化,準(zhǔn)確率高B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)在動作識別中無法捕捉動作的時空特征C.3D卷積神經(jīng)網(wǎng)絡(luò)能夠同時處理空間和時間維度的信息,適用于動作識別任務(wù)D.動作識別系統(tǒng)對視頻的拍攝角度和背景變化不敏感,具有很強(qiáng)的通用性4、計算機(jī)視覺在醫(yī)學(xué)影像分析中的應(yīng)用有助于輔助醫(yī)生進(jìn)行診斷和治療。假設(shè)要分析一張腦部CT圖像,以下關(guān)于醫(yī)學(xué)影像分析中的計算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過分割腦組織、檢測病變區(qū)域等方法,為醫(yī)生提供定量的分析結(jié)果B.深度學(xué)習(xí)模型能夠自動學(xué)習(xí)醫(yī)學(xué)影像中的特征,輔助醫(yī)生發(fā)現(xiàn)潛在的疾病C.計算機(jī)視覺在醫(yī)學(xué)影像分析中的應(yīng)用需要遵循嚴(yán)格的醫(yī)學(xué)倫理和法規(guī)D.計算機(jī)視覺系統(tǒng)可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進(jìn)一步審查和判斷5、計算機(jī)視覺在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中有著重要的應(yīng)用。假設(shè)要在VR游戲中實(shí)現(xiàn)真實(shí)的場景交互。以下關(guān)于計算機(jī)視覺在VR/AR中的描述,哪一項(xiàng)是不正確的?()A.可以通過對用戶的動作和姿態(tài)進(jìn)行識別,實(shí)現(xiàn)自然的交互操作B.能夠?qū)⑻摂M物體與真實(shí)場景進(jìn)行準(zhǔn)確的融合和匹配C.計算機(jī)視覺技術(shù)可以提高VR/AR體驗(yàn)的沉浸感和真實(shí)感D.VR/AR中的計算機(jī)視覺應(yīng)用不存在任何技術(shù)挑戰(zhàn)和限制6、計算機(jī)視覺中的圖像配準(zhǔn)任務(wù)是將不同時間、不同視角或不同傳感器獲取的圖像進(jìn)行對齊。假設(shè)要將兩張拍攝角度不同的城市風(fēng)景照片進(jìn)行配準(zhǔn)。以下關(guān)于圖像配準(zhǔn)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征點(diǎn)匹配的方法,找到兩張圖像中的對應(yīng)點(diǎn),然后計算變換矩陣B.基于灰度信息的配準(zhǔn)方法通過比較圖像的像素值來實(shí)現(xiàn)配準(zhǔn)C.深度學(xué)習(xí)中的自監(jiān)督學(xué)習(xí)方法可以用于圖像配準(zhǔn),自動學(xué)習(xí)圖像之間的對應(yīng)關(guān)系D.圖像配準(zhǔn)總是能夠達(dá)到像素級別的精確對齊,不存在任何誤差7、在計算機(jī)視覺的三維重建任務(wù)中,假設(shè)要從一組二維圖像恢復(fù)出物體的三維結(jié)構(gòu)。以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺的方法需要多視角的圖像,并且對相機(jī)的標(biāo)定精度要求不高B.結(jié)構(gòu)光方法能夠快速準(zhǔn)確地獲取物體表面的三維信息,但對環(huán)境光敏感C.從運(yùn)動中恢復(fù)結(jié)構(gòu)(SfM)方法只適用于靜態(tài)場景,無法處理動態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型8、計算機(jī)視覺中的目標(biāo)計數(shù)任務(wù),例如統(tǒng)計圖像中物體的數(shù)量。假設(shè)要計算一張果園圖片中蘋果的數(shù)量,以下關(guān)于目標(biāo)計數(shù)方法的描述,正確的是:()A.基于傳統(tǒng)的圖像分割和對象識別方法可以準(zhǔn)確快速地完成目標(biāo)計數(shù)B.深度學(xué)習(xí)中的回歸模型不適合用于目標(biāo)計數(shù)任務(wù)C.目標(biāo)的大小、形狀和分布對計數(shù)結(jié)果沒有影響D.結(jié)合深度學(xué)習(xí)的密度估計方法能夠有效地實(shí)現(xiàn)目標(biāo)計數(shù)9、計算機(jī)視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設(shè)要將一張低分辨率的衛(wèi)星圖像重建為高分辨率圖像,以下關(guān)于模型訓(xùn)練的挑戰(zhàn),哪一項(xiàng)是最為突出的?()A.缺乏足夠的高分辨率衛(wèi)星圖像數(shù)據(jù)用于訓(xùn)練B.模型的訓(xùn)練時間過長,難以在短時間內(nèi)得到結(jié)果C.難以評估重建后的圖像質(zhì)量,沒有明確的標(biāo)準(zhǔn)D.計算資源需求過大,普通計算機(jī)難以承受10、計算機(jī)視覺中的無人駕駛技術(shù)是一個綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無人駕駛中的計算機(jī)視覺的說法,不正確的是()A.計算機(jī)視覺在無人駕駛中用于環(huán)境感知、目標(biāo)檢測、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r準(zhǔn)確地識別道路標(biāo)志、車輛和行人等物體C.無人駕駛中的計算機(jī)視覺系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對各種復(fù)雜的交通場景D.惡劣天氣條件和光照變化等因素仍然是無人駕駛中計算機(jī)視覺面臨的挑戰(zhàn)11、在計算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,將不同視角或時間拍攝的圖像進(jìn)行對齊,以下哪種變換模型可能適用于具有較大形變的圖像配準(zhǔn)?()A.剛性變換B.仿射變換C.投影變換D.非線性變換12、在計算機(jī)視覺的圖像質(zhì)量評估任務(wù)中,假設(shè)要評估一張經(jīng)過處理后的圖像的質(zhì)量。以下關(guān)于圖像質(zhì)量評估方法的描述,正確的是:()A.主觀評估方法通過人的觀察和判斷來評價圖像質(zhì)量,結(jié)果準(zhǔn)確可靠B.客觀評估方法中的全參考方法需要原始未失真圖像作為參考,計算復(fù)雜度低C.無參考圖像質(zhì)量評估方法能夠在沒有原始圖像的情況下準(zhǔn)確評估圖像質(zhì)量D.所有的圖像質(zhì)量評估方法都能夠完全反映人對圖像質(zhì)量的主觀感受13、在計算機(jī)視覺中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)的圖像。以下關(guān)于圖像檢索的說法,錯誤的是()A.圖像檢索可以基于圖像的內(nèi)容,如顏色、形狀和紋理等特征B.深度學(xué)習(xí)方法可以學(xué)習(xí)到更具語義的圖像表示,提高圖像檢索的準(zhǔn)確性C.圖像檢索在電子商務(wù)、數(shù)字圖書館和圖像搜索引擎等領(lǐng)域有廣泛的應(yīng)用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫的組織和索引無關(guān)14、計算機(jī)視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細(xì)節(jié)。假設(shè)要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時要保持圖像的自然度和真實(shí)性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學(xué)習(xí)的方法D.基于學(xué)習(xí)字典的方法15、在計算機(jī)視覺的圖像分類任務(wù)中,假設(shè)要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會對結(jié)果產(chǎn)生明顯影響B(tài).過采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導(dǎo)致過擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會丟失部分有用信息D.類別不均衡問題無法通過數(shù)據(jù)處理方法解決,只能通過改進(jìn)分類算法來應(yīng)對16、計算機(jī)視覺中的行人重識別是指在不同攝像頭拍攝的圖像中識別出同一個行人。假設(shè)要在一個大型商場的監(jiān)控系統(tǒng)中實(shí)現(xiàn)行人重識別,以下關(guān)于行人重識別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對行人的姿態(tài)和光照變化不敏感,識別準(zhǔn)確率高B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法能夠?qū)W習(xí)到行人的判別性特征,但容易受到背景干擾C.行人重識別系統(tǒng)只需要關(guān)注行人的外觀特征,不需要考慮行人的行為特征D.行人重識別在不同場景和攝像頭視角下的性能始終保持穩(wěn)定,不受影響17、在計算機(jī)視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進(jìn)行B.深度學(xué)習(xí)方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學(xué)影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準(zhǔn)確地將圖像中的所有物體都分割出來18、在計算機(jī)視覺的圖像語義分割任務(wù)中,假設(shè)要處理具有多尺度特征的圖像,例如同時包含大物體和小物體的場景。以下關(guān)于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡(luò)可以應(yīng)對多尺度問題,通過調(diào)整網(wǎng)絡(luò)參數(shù)即可B.采用多尺度輸入圖像,分別進(jìn)行處理后再融合結(jié)果,能夠有效解決多尺度問題,但計算量大C.空洞卷積在處理多尺度特征時會引入大量的噪聲,降低分割精度D.圖像語義分割中多尺度問題無法解決,只能盡量避免處理這類圖像19、在計算機(jī)視覺的人臉識別任務(wù)中,假設(shè)要在一個大型數(shù)據(jù)庫中快速準(zhǔn)確地識別出特定人物的面部。數(shù)據(jù)庫中的人臉圖像可能存在表情、光照和姿態(tài)的變化。為了提高人臉識別的性能,以下哪種方法是常用且有效的?()A.提取人臉的全局特征,如整體形狀和輪廓B.僅關(guān)注人臉的局部特征,如眼睛和嘴巴C.使用多模態(tài)數(shù)據(jù),結(jié)合人臉的紋理和深度信息D.隨機(jī)選擇人臉特征進(jìn)行匹配20、計算機(jī)視覺中的光流計算用于估計圖像中像素的運(yùn)動。假設(shè)要分析一段視頻中物體的運(yùn)動速度和方向。以下關(guān)于光流計算的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過比較連續(xù)幀之間的像素差異來計算光流B.光流計算能夠?yàn)橐曨l中的目標(biāo)跟蹤和行為分析提供重要信息C.無論視頻的幀率和分辨率如何,光流計算都能準(zhǔn)確地估計像素運(yùn)動D.深度學(xué)習(xí)方法也被應(yīng)用于光流計算,提高了計算的準(zhǔn)確性和效率21、計算機(jī)視覺中的圖像修復(fù)是填補(bǔ)圖像中的缺失或損壞部分。假設(shè)我們有一張老照片,其中部分區(qū)域被損壞,需要進(jìn)行修復(fù)。以下哪種圖像修復(fù)方法能夠生成自然、合理的內(nèi)容,與周圍區(qū)域融合良好?()A.基于紋理合成的修復(fù)方法B.基于插值和填充的修復(fù)方法C.基于深度學(xué)習(xí)的圖像修復(fù)網(wǎng)絡(luò),如ContextEncoderD.基于圖像分解和重構(gòu)的修復(fù)方法22、在目標(biāo)檢測中,YOLO(YouOnlyLookOnce)算法的特點(diǎn)是()A.檢測速度快B.檢測精度高C.適用于小目標(biāo)檢測D.對遮擋不敏感23、計算機(jī)視覺在無人駕駛中的應(yīng)用需要對周圍環(huán)境進(jìn)行快速準(zhǔn)確的感知。假設(shè)車輛要在復(fù)雜的城市道路環(huán)境中行駛,以下哪種傳感器的數(shù)據(jù)融合可能對提高環(huán)境感知的可靠性至關(guān)重要?()A.攝像頭與激光雷達(dá)B.攝像頭與毫米波雷達(dá)C.激光雷達(dá)與超聲波傳感器D.以上都有可能24、圖像去模糊是計算機(jī)視覺中的一個難題。假設(shè)一張圖像由于相機(jī)抖動而產(chǎn)生模糊,以下哪種去模糊方法可能需要對模糊核有較為準(zhǔn)確的估計?()A.基于深度學(xué)習(xí)的去模糊方法B.盲去卷積方法C.維納濾波去模糊方法D.均值濾波去模糊方法25、在計算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個或多個運(yùn)動目標(biāo)。假設(shè)要跟蹤一個在操場上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來實(shí)現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無論目標(biāo)的運(yùn)動速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋計算機(jī)視覺中的圖像檢索技術(shù)。2、(本題5分)簡述計算機(jī)視覺在電力系統(tǒng)中的線路巡檢和故障檢測。3、(本題5分)解釋計算機(jī)視覺中的可解釋性人工智能在視覺任務(wù)中的重要性。4、(本題5分)計算機(jī)視覺中如何進(jìn)行文具生產(chǎn)中的質(zhì)量控制?三、分析題(本大題共5個小題,共25分)1、(本題5分)某城市的地鐵站內(nèi)廣告設(shè)計富有創(chuàng)意。請剖析廣告在位置選擇、畫面內(nèi)容、乘客注意力吸引上的策略,以及如何提高廣告效果。2、(本題5分)分析某酒店的餐廳菜單設(shè)計,研究其如何通過排版、圖片、文字等展示菜品特色,提高顧客的點(diǎn)餐體驗(yàn)。3、(本題5分)剖析某音樂節(jié)的周邊產(chǎn)品設(shè)計,討論其如何運(yùn)用視

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論