2025屆廣西大學(xué)附屬中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第1頁
2025屆廣西大學(xué)附屬中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第2頁
2025屆廣西大學(xué)附屬中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第3頁
2025屆廣西大學(xué)附屬中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第4頁
2025屆廣西大學(xué)附屬中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆廣西大學(xué)附屬中學(xué)高考仿真模擬數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件2.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線準(zhǔn)線相離;②直線與直線的斜率乘積為;③設(shè)過點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號(hào)是()A.①② B.①③ C.②③ D.①②③3.是平面上的一定點(diǎn),是平面上不共線的三點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)的軌跡一定經(jīng)過的()A.重心 B.垂心 C.外心 D.內(nèi)心4.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),的最大值是()A.8 B.9 C.10 D.115.正的邊長為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.6.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交7.函數(shù)f(x)=的圖象大致為()A. B.C. D.8.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.9.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.10.已知雙曲線:的左右焦點(diǎn)分別為,,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.11.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)12.已知集合,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記等差數(shù)列和的前項(xiàng)和分別為和,若,則______.14.若,則的展開式中含的項(xiàng)的系數(shù)為_______.15.已知函數(shù),若函數(shù)有6個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.16.已知定義在上的函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,,若函數(shù)圖象與函數(shù)圖象的交點(diǎn)為,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角,,所對(duì)的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.18.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長均相等.(1)求證:平面;(2)求證:平面平面.19.(12分)已知函數(shù)(Ⅰ)若,求曲線在點(diǎn)處的切線方程;(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項(xiàng)和,,求證:數(shù)列的前項(xiàng)和.20.(12分)已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.(1)求數(shù)列,的通項(xiàng)公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,說明理由.21.(12分)已知橢圓的焦點(diǎn)為,,離心率為,點(diǎn)P為橢圓C上一動(dòng)點(diǎn),且的面積最大值為,O為坐標(biāo)原點(diǎn).(1)求橢圓C的方程;(2)設(shè)點(diǎn),為橢圓C上的兩個(gè)動(dòng)點(diǎn),當(dāng)為多少時(shí),點(diǎn)O到直線MN的距離為定值.22.(10分)若函數(shù)在處有極值,且,則稱為函數(shù)的“F點(diǎn)”.(1)設(shè)函數(shù)().①當(dāng)時(shí),求函數(shù)的極值;②若函數(shù)存在“F點(diǎn)”,求k的值;(2)已知函數(shù)(a,b,,)存在兩個(gè)不相等的“F點(diǎn)”,,且,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

利用數(shù)量積的定義可得,即可判斷出結(jié)論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.2、D【解析】

對(duì)于①,利用拋物線的定義,利用可判斷;對(duì)于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對(duì)于③,將代入拋物線的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對(duì)稱性可知,,兩點(diǎn)關(guān)于軸對(duì)稱,所以過點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.3、B【解析】

解出,計(jì)算并化簡可得出結(jié)論.【詳解】λ(),∴,∴,即點(diǎn)P在BC邊的高上,即點(diǎn)P的軌跡經(jīng)過△ABC的垂心.故選B.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算在幾何中的應(yīng)用,根據(jù)條件中的角計(jì)算是關(guān)鍵.4、B【解析】

根據(jù)題意計(jì)算,,,解不等式得到答案.【詳解】∵是以1為首項(xiàng),2為公差的等差數(shù)列,∴.∵是以1為首項(xiàng),2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時(shí),的最大值是9.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.5、D【解析】

如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)?,故,因?yàn)椋?由正弦定理可得,故,又因?yàn)?,?因?yàn)?,故平面,所以,因?yàn)槠矫妫矫?,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計(jì)算,本題有一定的難度.6、D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.7、D【解析】

根據(jù)函數(shù)為非偶函數(shù)可排除兩個(gè)選項(xiàng),再根據(jù)特殊值可區(qū)分剩余兩個(gè)選項(xiàng).【詳解】因?yàn)閒(-x)=≠f(x)知f(x)的圖象不關(guān)于y軸對(duì)稱,排除選項(xiàng)B,C.又f(2)==-<0.排除A,故選D.【點(diǎn)睛】本題主要考查了函數(shù)圖象的對(duì)稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.8、A【解析】

設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點(diǎn),∴直線的方程為:,即,故選:A.【點(diǎn)睛】本題考查直線與拋物線相交的中點(diǎn)弦問題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.9、B【解析】

作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,故,即的最小值為.故選:B【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.10、D【解析】由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).11、C【解析】

利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點(diǎn)睛】(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.12、C【解析】

先化簡集合A,再與集合B求交集.【詳解】因?yàn)?,,所?故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

結(jié)合等差數(shù)列的前項(xiàng)和公式,可得,求解即可.【詳解】由題意,,,因?yàn)?所以.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式及等差中項(xiàng)的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.14、【解析】

首先根據(jù)定積分的應(yīng)用求出的值,進(jìn)一步利用二項(xiàng)式的展開式的應(yīng)用求出結(jié)果.【詳解】,根據(jù)二項(xiàng)式展開式通項(xiàng):,令,解得,所以含的項(xiàng)的系數(shù).故答案為:【點(diǎn)睛】本題考查定積分,二項(xiàng)式的展開式的應(yīng)用,主要考查學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.15、【解析】

由題意首先研究函數(shù)的性質(zhì),然后結(jié)合函數(shù)的性質(zhì)數(shù)形結(jié)合得到關(guān)于a的不等式,求解不等式即可確定實(shí)數(shù)a的取值范圍.【詳解】當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,很明顯,且存在唯一的實(shí)數(shù)滿足,當(dāng)時(shí),由對(duì)勾函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結(jié)合復(fù)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且當(dāng)時(shí),,考查函數(shù)在區(qū)間上的性質(zhì),由二次函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù)有6個(gè)零點(diǎn),即方程有6個(gè)根,也就是有6個(gè)根,即與有6個(gè)不同交點(diǎn),注意到函數(shù)關(guān)于直線對(duì)稱,則函數(shù)關(guān)于直線對(duì)稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實(shí)數(shù)的取值范圍是.故答案為.【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,復(fù)合函數(shù)的單調(diào)性,數(shù)形結(jié)合的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16、4038.【解析】

由函數(shù)圖象的對(duì)稱性得:函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱,則,,即,得解.【詳解】由知:得函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱又函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱則函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱則故,即本題正確結(jié)果:【點(diǎn)睛】本題考查利用函數(shù)圖象的對(duì)稱性來求值的問題,關(guān)鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對(duì)稱中心,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡單題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.18、(1)證明見解析;(2)證明見解析.【解析】

證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結(jié),交于點(diǎn),連結(jié),在矩形中,點(diǎn)為的中點(diǎn),又,故,,又,平面,所以平面,又平面,所以平面平面.19、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導(dǎo)后討論當(dāng)時(shí)和時(shí)的單調(diào)性證明,求出實(shí)數(shù)的取值范圍先求出、的通項(xiàng)公式,利用當(dāng)時(shí),得,下面證明:解析:(Ⅰ)因?yàn)椋?,,切點(diǎn)為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當(dāng)且僅當(dāng)取等號(hào)).故在上為增函數(shù).①當(dāng)時(shí),,故在上為增函數(shù),所以恒成立,故符合題意;②當(dāng)時(shí),由于,,根據(jù)零點(diǎn)存在定理,必存在,使得,由于在上為增函數(shù),故當(dāng)時(shí),,故在上為減函數(shù),所以當(dāng)時(shí),,故在上不恒成立,所以不符合題意.綜上所述,實(shí)數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當(dāng)時(shí),,故當(dāng)時(shí),,故,故.下面證明:因?yàn)槎?,所以,,即:點(diǎn)睛:本題考查了利用導(dǎo)數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導(dǎo)數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計(jì)算較為復(fù)雜,本題屬于難題.20、(1);(2);(3)存在,1.【解析】

(1)利用基本量法直接計(jì)算即可;(2)利用錯(cuò)位相減法計(jì)算;(3),令可得,,討論即可.【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,因?yàn)?,所以,即,解得,或(舍去?所以.(2),,所以,所以.(3)由(1)可得,,所以.因?yàn)槭菙?shù)列或中的一項(xiàng),所以,所以,因?yàn)?,所以,又,則或.當(dāng)時(shí),有,即,令.則.當(dāng)時(shí),;當(dāng)時(shí),,即.由,知無整數(shù)解.當(dāng)時(shí),有,即存在使得是數(shù)列中的第2項(xiàng),故存在正整數(shù),使得是數(shù)列中的項(xiàng).【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,涉及到等差、等比數(shù)列的通項(xiàng),錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,數(shù)列中的存在性問題,是一道較為綜合的題.21、(1);(2)當(dāng)=0時(shí),點(diǎn)O到直線MN的距離為定值.【解析】

(1)的面積最大時(shí),是短軸端點(diǎn),由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時(shí),設(shè)其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應(yīng)用韋達(dá)定理得,注意,一是計(jì)算,二是計(jì)算原點(diǎn)到直線的距離,兩者比較可得結(jié)論.【詳解】(1)因?yàn)樵跈E圓上,當(dāng)是短軸端點(diǎn)時(shí),到軸距離最大,此時(shí)面積最大,所以,由,解得,所以橢圓方程為.(2)在時(shí),設(shè)直線方程為,原點(diǎn)到此直線的距離為,即,由,得,,,所以,,,所以當(dāng)時(shí),,,為常數(shù).若,則,,,,,綜上所述,當(dāng)=0時(shí),點(diǎn)O到直線MN的距離為定值.【點(diǎn)睛】本題考查求橢圓方程與橢圓的幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查運(yùn)算求解能力.解題方法是“設(shè)而不求”法.在直線與圓錐曲線相交時(shí)常用此法通過韋達(dá)定理聯(lián)系已知式與待求式.22、(1)①極小值為1,無極大值.②實(shí)數(shù)k的值為1.(2)【解析】

(1)①將代入可得,求導(dǎo)討論函數(shù)單調(diào)性,即得極值;②設(shè)是函數(shù)的一個(gè)“F點(diǎn)”(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論