下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)上?,F(xiàn)代化工職業(yè)學(xué)院
《原理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的語(yǔ)音處理領(lǐng)域,語(yǔ)音合成技術(shù)旨在生成自然流暢的人類語(yǔ)音。假設(shè)要開發(fā)一個(gè)能夠?yàn)橛新曌x物生成逼真語(yǔ)音的系統(tǒng),需要考慮語(yǔ)音的韻律、語(yǔ)調(diào)等因素。以下哪種語(yǔ)音合成方法在生成高質(zhì)量、富有表現(xiàn)力的語(yǔ)音方面表現(xiàn)更為突出?()A.拼接式語(yǔ)音合成B.參數(shù)式語(yǔ)音合成C.基于深度學(xué)習(xí)的端到端語(yǔ)音合成D.基于規(guī)則的語(yǔ)音合成2、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模數(shù)據(jù)集上訓(xùn)練好的圖像分類模型應(yīng)用到一個(gè)特定的小數(shù)據(jù)集上,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型在新數(shù)據(jù)集上進(jìn)行微調(diào),快速獲得較好的性能B.由于數(shù)據(jù)集差異較大,原模型無法在新數(shù)據(jù)集上使用,需要重新訓(xùn)練C.遷移學(xué)習(xí)只能在相同領(lǐng)域的任務(wù)之間進(jìn)行,不同領(lǐng)域無法應(yīng)用D.遷移學(xué)習(xí)會(huì)導(dǎo)致模型過擬合新數(shù)據(jù)集,降低泛化能力3、在人工智能的自動(dòng)駕駛倫理問題中,例如在面臨不可避免的事故時(shí)如何做出決策,以下哪種思考角度和原則可能是需要被考慮的?()A.功利主義原則B.道義論原則C.權(quán)利主義原則D.以上都是4、人工智能中的無人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們?cè)谟懻摕o人駕駛汽車的責(zé)任歸屬問題,以下關(guān)于無人駕駛責(zé)任的說法,哪一項(xiàng)是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任5、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。以下關(guān)于聯(lián)邦學(xué)習(xí)的說法,不正確的是()A.聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下,實(shí)現(xiàn)多個(gè)參與方之間的模型訓(xùn)練和共享B.解決了數(shù)據(jù)在不同機(jī)構(gòu)之間難以流通和共享的問題C.聯(lián)邦學(xué)習(xí)的通信開銷較大,限制了其在大規(guī)模數(shù)據(jù)上的應(yīng)用D.聯(lián)邦學(xué)習(xí)技術(shù)已經(jīng)非常成熟,不存在任何技術(shù)挑戰(zhàn)和安全風(fēng)險(xiǎn)6、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對(duì)醫(yī)學(xué)影像中的病變區(qū)域進(jìn)行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時(shí)效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動(dòng)學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和改進(jìn)7、人工智能中的強(qiáng)化學(xué)習(xí)算法可以分為基于值函數(shù)的方法和基于策略的方法。以下關(guān)于這兩種方法的描述,不正確的是()A.基于值函數(shù)的方法通過估計(jì)狀態(tài)值或動(dòng)作值來選擇最優(yōu)動(dòng)作B.基于策略的方法直接學(xué)習(xí)策略函數(shù),輸出動(dòng)作的概率分布C.基于值函數(shù)的方法和基于策略的方法不能結(jié)合使用,只能選擇其一D.這兩種方法各有優(yōu)缺點(diǎn),在不同的應(yīng)用場(chǎng)景中表現(xiàn)不同8、在人工智能的發(fā)展過程中,算法的創(chuàng)新起著關(guān)鍵作用。假設(shè)我們要設(shè)計(jì)一種新的人工智能算法,以下關(guān)于算法設(shè)計(jì)的原則,哪一項(xiàng)是不正確的?()A.高效性B.可擴(kuò)展性C.復(fù)雜性優(yōu)先D.創(chuàng)新性9、人工智能在教育領(lǐng)域有著創(chuàng)新應(yīng)用。假設(shè)要開發(fā)一個(gè)自適應(yīng)學(xué)習(xí)系統(tǒng),以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.根據(jù)學(xué)生的學(xué)習(xí)進(jìn)度和表現(xiàn),動(dòng)態(tài)調(diào)整學(xué)習(xí)內(nèi)容和難度B.利用情感分析技術(shù)了解學(xué)生的學(xué)習(xí)情緒,提供相應(yīng)的激勵(lì)和支持C.人工智能驅(qū)動(dòng)的教育系統(tǒng)可以完全替代教師的角色,實(shí)現(xiàn)自主學(xué)習(xí)D.結(jié)合虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)技術(shù),創(chuàng)造沉浸式的學(xué)習(xí)體驗(yàn)10、假設(shè)要開發(fā)一個(gè)能夠在復(fù)雜環(huán)境中自主導(dǎo)航的智能機(jī)器人,例如在倉(cāng)庫(kù)中搬運(yùn)貨物,以下哪個(gè)模塊對(duì)于機(jī)器人的決策和行動(dòng)至關(guān)重要?()A.環(huán)境感知模塊B.路徑規(guī)劃模塊C.運(yùn)動(dòng)控制模塊D.以上都是11、假設(shè)在一個(gè)智能交通系統(tǒng)中,需要利用人工智能算法來優(yōu)化交通信號(hào)燈的控制,以減少交通擁堵和提高道路通行效率。考慮到實(shí)時(shí)交通流量的變化和復(fù)雜的道路網(wǎng)絡(luò),以下哪種技術(shù)可能是核心?()A.深度學(xué)習(xí)預(yù)測(cè)交通流量B.傳統(tǒng)的數(shù)學(xué)優(yōu)化算法C.基于案例的推理D.蒙特卡羅模擬12、在人工智能的醫(yī)療應(yīng)用中,疾病診斷是一個(gè)重要的方向。假設(shè)我們要利用人工智能技術(shù)輔助醫(yī)生診斷心臟病,需要對(duì)大量的醫(yī)療數(shù)據(jù)進(jìn)行分析。那么,以下關(guān)于人工智能在醫(yī)療診斷中的作用,哪一項(xiàng)是不準(zhǔn)確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺的細(xì)微模式和關(guān)聯(lián)B.可以完全取代醫(yī)生的診斷,獨(dú)立做出準(zhǔn)確的判斷C.有助于提高診斷的效率和準(zhǔn)確性D.需要結(jié)合醫(yī)生的臨床經(jīng)驗(yàn)和專業(yè)知識(shí)進(jìn)行綜合判斷13、在人工智能的對(duì)話系統(tǒng)中,假設(shè)需要根據(jù)用戶的上下文和歷史對(duì)話信息生成連貫且有針對(duì)性的回復(fù)。以下哪種方法能夠更好地利用上下文信息?()A.使用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)捕捉序列信息B.只關(guān)注當(dāng)前輸入的文本,不考慮歷史信息C.對(duì)上下文信息進(jìn)行簡(jiǎn)單的統(tǒng)計(jì)分析D.隨機(jī)生成回復(fù),不依賴上下文14、深度學(xué)習(xí)模型在圖像識(shí)別任務(wù)中取得了顯著的成果。假設(shè)要訓(xùn)練一個(gè)深度卷積神經(jīng)網(wǎng)絡(luò)來識(shí)別不同種類的動(dòng)物,以下關(guān)于模型訓(xùn)練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識(shí)別準(zhǔn)確率,層數(shù)越多越好B.訓(xùn)練數(shù)據(jù)的數(shù)量和質(zhì)量對(duì)模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計(jì)C.模型在訓(xùn)練集上的準(zhǔn)確率很高,但在測(cè)試集上的準(zhǔn)確率很低,可能是出現(xiàn)了過擬合現(xiàn)象D.深度學(xué)習(xí)模型不需要進(jìn)行調(diào)參和優(yōu)化,直接使用默認(rèn)參數(shù)就能得到較好的結(jié)果15、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)是兩種主要的學(xué)習(xí)方式??紤]一個(gè)場(chǎng)景,我們有大量未標(biāo)記的圖像數(shù)據(jù),希望從中發(fā)現(xiàn)一些潛在的模式和結(jié)構(gòu)。以下哪種機(jī)器學(xué)習(xí)方法更適合這種情況?()A.線性回歸B.決策樹C.聚類分析D.邏輯回歸二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋人工智能中的數(shù)據(jù)偏見問題。2、(本題5分)說明注意力機(jī)制在深度學(xué)習(xí)中的重要性。3、(本題5分)解釋人工智能在推動(dòng)社會(huì)文明進(jìn)步和人類發(fā)展中的價(jià)值。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Scikit-learn中的樸素貝葉斯算法,對(duì)垃圾郵件進(jìn)行分類。提取郵件中的文本特征,計(jì)算分類的準(zhǔn)確率和誤判率。2、(本題5分)借助自然語(yǔ)言處理技術(shù),對(duì)問答系統(tǒng)進(jìn)行構(gòu)建。能夠理解用戶的問題,從知識(shí)庫(kù)中搜索答案并返回準(zhǔn)確的回答。3、(本題5分)利用Python的Keras庫(kù),構(gòu)建一個(gè)基于深度神經(jīng)網(wǎng)絡(luò)的圖像去模糊模型。對(duì)模糊的圖像進(jìn)行清晰化處理,恢復(fù)圖像細(xì)節(jié)。4、(本題5分)使用Python中的PyTorch框架,構(gòu)建一個(gè)圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)模型,對(duì)社交網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行分析。通過分析節(jié)點(diǎn)之間的關(guān)系,預(yù)測(cè)用戶的行為或關(guān)系。5、(本題5分)通過強(qiáng)化學(xué)習(xí)訓(xùn)練一個(gè)智能體在模擬的物流環(huán)境中進(jìn)行貨物配送,優(yōu)化配
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45098-2024營(yíng)運(yùn)純電動(dòng)汽車換電服務(wù)技術(shù)要求
- 買賣成品家具合同范例
- 標(biāo)牌標(biāo)識(shí)采購(gòu)合同范例
- 市場(chǎng)開拓合同范例
- 硅膠標(biāo)牌采購(gòu)合同范例
- 監(jiān)控項(xiàng)目外包合同范例
- 成都飯?zhí)贸邪?wù)合同范例
- 企業(yè)網(wǎng)絡(luò)業(yè)務(wù)代理合同范例
- 物業(yè)泳池轉(zhuǎn)租合同范例
- 勞務(wù)合同范例全文
- 某制藥廠房空調(diào)自控系統(tǒng)URS文件
- 身臨其境 課件-2024-2025學(xué)年人教版(2024)初中美術(shù)七年級(jí)上冊(cè)
- 2024秋期國(guó)家開放大學(xué)??啤渡鐣?huì)調(diào)查研究與方法》一平臺(tái)在線形考(形成性考核一至四)試題及答案
- 高中數(shù)學(xué)單元教學(xué)設(shè)計(jì)范文(5篇)
- 【人教版】《勞動(dòng)教育》五上 勞動(dòng)項(xiàng)目五《設(shè)計(jì)制作海報(bào)》課件
- GB/T 22517.2-2024體育場(chǎng)地使用要求及檢驗(yàn)方法第2部分:游泳場(chǎng)地
- 2024-2030年生命科學(xué)中的工業(yè)自動(dòng)化行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2024年江蘇蘇州市事業(yè)單位專業(yè)化青年人才定崗特選444人歷年高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- Unit3 Amazing Animals(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教PEP(2024)三年級(jí)上冊(cè)
- 一年級(jí)心理健康課件生命真美好蘇科版
- 10以內(nèi)連加減口算練習(xí)題完整版89
評(píng)論
0/150
提交評(píng)論