2025屆重慶市第一中高考數學考前最后一卷預測卷含解析_第1頁
2025屆重慶市第一中高考數學考前最后一卷預測卷含解析_第2頁
2025屆重慶市第一中高考數學考前最后一卷預測卷含解析_第3頁
2025屆重慶市第一中高考數學考前最后一卷預測卷含解析_第4頁
2025屆重慶市第一中高考數學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆重慶市第一中高考數學考前最后一卷預測卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數z滿足,則復數z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.要排出高三某班一天中,語文、數學、英語各節(jié),自習課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數學課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數是()A. B. C. D.3.已知函數,若,則等于()A.-3 B.-1 C.3 D.04.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.5.由實數組成的等比數列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.7.已知實數滿足,則的最小值為()A. B. C. D.8.已知是虛數單位,若,則()A. B.2 C. D.39.已知函數,且關于的方程有且只有一個實數根,則實數的取值范圍().A. B. C. D.10.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.11.已知函數()的部分圖象如圖所示.則()A. B.C. D.12.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在直四棱柱中,底面是平行四邊形,點是棱的中點,點是棱靠近的三等分點,且三棱錐的體積為2,則四棱柱的體積為______.14.已知函數,則________;滿足的的取值范圍為________.15.如圖,已知扇形的半徑為1,面積為,則_____.16.已知正數a,b滿足a+b=1,則的最小值等于__________,此時a=____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點坐標為,,分別是橢圓的左,右頂點,是橢圓上異于,的一點,且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點作兩條直線,分別交橢圓于,兩點(異于點).當直線,的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標;若不是,請說明理.18.(12分)已知函數.(1)當時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.19.(12分)已知數列的各項均為正數,且滿足.(1)求,及的通項公式;(2)求數列的前項和.20.(12分)已知函數.(1)若函數,求的極值;(2)證明:.(參考數據:)21.(12分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.22.(10分)為了加強環(huán)保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內的人數;(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數,求的分布列和數學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

化簡復數,求得,得到復數在復平面對應點的坐標,即可求解.【詳解】由題意,復數z滿足,可得,所以復數在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數的運算,以及復數的幾何表示方法,其中解答中熟記復數的運算法則,結合復數的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.2、C【解析】

根據題意,分兩種情況進行討論:①語文和數學都安排在上午;②語文和數學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數目,由分類加法計數原理可得答案.【詳解】根據題意,分兩種情況進行討論:①語文和數學都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數學課也必須相鄰,將節(jié)語文課和節(jié)數學課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數為種;②語文和數學都一個安排在上午,一個安排在下午.語文和數學一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數學課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應用,涉及分類計數原理的應用,屬于中等題.3、D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數的表示方法,解題時注意根據問題的條件和求解的結論之間的關系去尋找函數的解析式要滿足的關系.4、C【解析】

設,根據導數的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設,則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【點睛】本題考查直線與圓位置關系、直線與拋物線位置關系,拋物線兩切點所在直線求解是解題的關鍵,屬于中檔題.5、C【解析】

根據等比數列的性質以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數列,則,

若,則,即成立,

若成立,則,即,

故“”是“”的充要條件,

故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數列的通項公式是解決本題的關鍵.6、D【解析】

根據幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.7、A【解析】

所求的分母特征,利用變形構造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當且僅當時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質在于代數式的靈活變形,拼系數、湊常數是關鍵.(1)拼湊的技巧,以整式為基礎,注意利用系數的變化以及等式中常數的調整,做到等價變形;(2)代數式的變形以拼湊出和或積的定值為目標(3)拆項、添項應注意檢驗利用基本不等式的前提.8、A【解析】

直接將兩邊同時乘以求出復數,再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數的運算及其模的求法,是基礎題.9、B【解析】

根據條件可知方程有且只有一個實根等價于函數的圖象與直線只有一個交點,作出圖象,數形結合即可.【詳解】解:因為條件等價于函數的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數圖象與方程零點之間的關系,數形結合是關鍵,屬于基礎題.10、B【解析】

設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,

,

當且僅當三點共線時,取“=”號,∴的最小值為.

故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質的應用,體現了數形結合的數學思想,屬于中檔題.11、C【解析】

由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,,即,解得;因為所以,當時,.故選:C.【點睛】本題主要考查了由三角函數的圖象求解析式和已知函數值求自變量,考查三角恒等變換在三角函數化簡中的應用,難度一般.12、D【解析】

設,可得,構造()22,結合,可得,根據向量減法的模長不等式可得解.【詳解】設,則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】

由題意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為?!军c睛】本題主要考查了棱柱與棱錐的體積的計算問題,其中解答中正確認識幾何體的結構特征,合理、恰當地表示直四棱柱三棱錐的體積是解答本題的關鍵,著重考查了推理與運算能力,以及空間想象能力,屬于中檔試題。14、【解析】

首先由分段函數的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點睛】本題考查分段函數的性質的應用,分類討論思想,屬于基礎題.15、【解析】

根據題意,利用扇形面積公式求出圓心角,再根據等腰三角形性質求出,利用向量的數量積公式求出.【詳解】設角,則,,所以在等腰三角形中,,則.故答案為:.【點睛】本題考查扇形的面積公式和向量的數量積公式,屬于基礎題.16、3【解析】

根據題意,分析可得,由基本不等式的性質可得最小值,進而分析基本不等式成立的條件可得a的值,即可得答案.【詳解】根據題意,正數a、b滿足,則,當且僅當時,等號成立,故的最小值為3,此時.故答案為:3;.【點睛】本題考查基本不等式及其應用,考查轉化與化歸能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)直線過定點【解析】

(1),再由,解方程組即可;(2)設,,由,得,由直線MN的方程與橢圓方程聯立得到根與系數的關系,代入計算即可.【詳解】(1)由題意知:,又,且解得,,∴橢圓方程為,(2)當直線的斜率存在時,設其方程為,設,,由,得.則,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直線過點當直線的斜率不存在時,設直線的方程為,,,其中,∴,由,得,所以∴當直線的斜率不存在時,直線也過定點綜上所述,直線過定點.【點睛】本題考查求橢圓的標準方程以及直線與橢圓位置關系中的定點問題,在處理直線與橢圓的位置關系的大題時,一般要利用根與系數的關系來求解,本題是一道中檔題.18、(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數為為,求解不等式可得實數a的取值范圍為試題解析:(I)當時,化為,當時,不等式化為,無解;當時,不等式化為,解得;當時,不等式化為,解得.所以的解集為.(II)由題設可得,所以函數的圖像與x軸圍成的三角形的三個頂點分別為,,,的面積為.由題設得,故.所以a的取值范圍為19、(1);.;(2)【解析】

(1)根據題意,知,且,令和即可求出,,以及運用遞推關系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數列,利用等比數列的前項和公式,即可求得的前項和.【詳解】解:(1)由題可知,,且,當時,,則,當時,,,由已知可得,且,∴的通項公式:.(2)設,則,所以,,得是首項為8,公比為4的等比數列,所以數列的前項和為:,即,所以數列的前項和:.【點睛】本題考查通過遞推關系求數列的通項公式,以及等比數列的前項和公式,考查計算能力.20、(1)見解析;(1)見證明【解析】

(1)求出函數的導數,解關于導函數的不等式,求出函數的單調區(qū)間,從而求出函數的極值即可;(1)問題轉化為證ex﹣x1﹣xlnx﹣1>0,根據xlnx≤x(x﹣1),問題轉化為只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根據函數的單調性證明即可.【詳解】(1),,當,,當,,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1<ex﹣x1.即證ex﹣x1﹣xlnx﹣1>0,先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,易知h(x)在(0,1)遞增,在(1,+∞)遞減,故h(x)≤h(1)=0,即lnx≤x﹣1,當且僅當x=1時取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)遞增,故x∈(0,1ln1]時,F′(x)≤0,F(x)遞減,即k′(x)遞減,x∈(1ln1,+∞)時,F′(x)>0,F(x)遞增,即k′(x)遞增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零點存在定理,可知?x1∈(0,1ln1),?x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1時,k′(x)>0,k(x)遞增,當x1<x<x1時,k′(x)<0,k(x)遞減,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0時,k(x)>0,原不等式成立.【點睛】本題考查了函數的單調性,極值問題,考查導數的應用以及不等式的證明,考查轉化思想,屬于中檔題.21、(1)見證明;(2)【解析】

(1)取的中點,連接,要證平面平面,轉證平面,即證,即可;(2)以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出平面與平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論