![DeepDR:用于藥物反應(yīng)預測的深度學習庫 DeepDR -a deep learning library for drug response prediction_第1頁](http://file4.renrendoc.com/view6/M01/14/0C/wKhkGWdw98qAGJQ0AAM2bRaIyKk787.jpg)
![DeepDR:用于藥物反應(yīng)預測的深度學習庫 DeepDR -a deep learning library for drug response prediction_第2頁](http://file4.renrendoc.com/view6/M01/14/0C/wKhkGWdw98qAGJQ0AAM2bRaIyKk7872.jpg)
![DeepDR:用于藥物反應(yīng)預測的深度學習庫 DeepDR -a deep learning library for drug response prediction_第3頁](http://file4.renrendoc.com/view6/M01/14/0C/wKhkGWdw98qAGJQ0AAM2bRaIyKk7873.jpg)
![DeepDR:用于藥物反應(yīng)預測的深度學習庫 DeepDR -a deep learning library for drug response prediction_第4頁](http://file4.renrendoc.com/view6/M01/14/0C/wKhkGWdw98qAGJQ0AAM2bRaIyKk7874.jpg)
![DeepDR:用于藥物反應(yīng)預測的深度學習庫 DeepDR -a deep learning library for drug response prediction_第5頁](http://file4.renrendoc.com/view6/M01/14/0C/wKhkGWdw98qAGJQ0AAM2bRaIyKk7875.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Bioinformatics,2024,40(12),btae688
/10.1093/bioinformatics/btae688
AdvanceAccessPublicationDate:18November2024
ApplicationsNote
Dataandtextmining
Downloadedfrom
/bioinformatics/article/40/12/btae688/7903283bygueston26December2024
DeepDR:adeeplearninglibraryfordrugresponseprediction
ZhengxiangJiang
1
,
2
andPengyongLi
1
,
*
1SchoolofComputerScienceandTechnology,XidianUniversity,Xi’an,Shaanxi710126,China2SchoolofElectronicEngineering,XidianUniversity,Xi’an,Shaanxi710126,China
*Correspondingauthor.SchoolofComputerScienceandTechnology,XidianUniversity,266XinglongSectionofXifengRoad,Xi’an,Shaanxi710126,China.E-mail:lipengyong@
AssociateEditor:JonathanWren
Abstract
Summary:Accuratedrugresponsepredictioniscriticaltoadvancingprecisionmedicineanddrugdiscovery.Recentadvancesindeeplearning(DL)haveshownpromiseinpredictingdrugresponse;however,thelackofconvenienttoolstosupportsuchmodelinglimitstheirwidespreadapplication.Toaddressthis,weintroduceDeepDR,thefirstDLlibraryspecificallydevelopedfordrugresponseprediction.DeepDRsimplifiestheprocessbyautomatingdrugandcellfeaturization,modelconstruction,training,andinference,allachievablewithbriefprogramming.Thelibraryincorporatesthreetypesofdrugfeaturesalongwithninedrugencoders,fourtypesofcellfeaturesalongwithninecellencoders,andtwofusionmodules,enablingtheimplementationofupto135DLmodelsfordrugresponseprediction.WealsoexploredbenchmarkingperformancewithDeepDR,andtheoptimalmodelsareavailableonauser-friendlyvisualinterface.
Availabilityandimplementation:DeepDRcanbeinstalledfromPyPI
(/project/deepdr
).ThesourcecodeandexperimentaldataareavailableonGitHub
(/user15632/DeepDR
).
1Introduction
Precisionmedicineaimstodelivertailoredtherapiesforindividualtumorsatthemolecularlevel.Predictingdrugresponse(DR)
(Baptistaetal.2021
)remainsacomplexchallengewithinthisfield,reflectingtheintricaterelationshipbetweencancermulti-omicsinformationandtreatmenteffi-cacy.AccurateDRpredictioncouldsignificantlycontributetothedesignofpersonalizedtreatmentsandtheimprovementoftherapeuticoutcomes.Deeplearning(DL)
(LeCunetal.
2015
),amachinelearningapproach,hasdemonstratedcon-siderablepromiseinidentifyingcomplexpatternswithinbio-logicalinformation,includingcancermulti-omicsanddrugmolecules.ThispotentialhasspurreditsgrowingapplicationinDRmodeling,whereitisconsideredavaluabletoolforen-hancingunderstandingandpredictivecapabilities
(Lietal.
2021a
).However,despitethedevelopmentofnumerousmodelsinthisdomain,thereisstillalackofaunifiedandgeneralizedframeworkformodelconstructionandtraining.
CurrentDLapproachestoDRpredictiontypicallyuseastructuredmethodology,consistingofkeycomponentssuchasdrugmodeling,cellmodeling,andfusionmodulesforpredictiongeneration.Drugmodelingaimstoeffectivelyrepresentthechemicalpropertiesandpotentialbiologicaleffectsofdrugs.Thisisusuallyachievedbyrepresentingthemolecularstructureinformatsconducivetocomputationalprocessing,suchasmo-lecularfingerprints
(Lietal.2021a
),SMILES(SimplifiedMolecularInputLineEntrySystem)
(Liuetal.2019
),andmo-leculargraphs
(Liuetal.2020
),followedbylearningstructuralinformationthroughmodelslikeDeepNeuralNetworks
(DNNs)
(Chawlaetal.2022
),ConvolutionalNeuralNetworks(CNNs)
(Manicaetal.2019
),andGraphNeuralNetworks(GNNs)
(Zhangetal.2019
).Cellmodelinginvolvesprocessingbiologicaldatafromcells,includingtranscriptomics
(Chawla
etal.2022
),genomics
(Liuetal.2019
),andproteomics
(Matlocketal.2018
).DLtechniques,particularlyDNNs
(Chawlaetal.2022
),andCNNs
(Manicaetal.2019
),arelever-agedtolearnintricatepatternswithinthesefeatures.Thefusionmoduleintegratestheinsightsfromdrugandcellmodeling,us-ingDNNs
(Chawlaetal.2022
)orattentionmechanisms
(Sakellaropoulosetal.2019
),topredictdrugresponses.
DRpredictionmodelshaveabroadspectrumofapplica-tionsbeyondtheirprimaryfunction.Thesemodelscanbeutilizedtopredictthepharmacologicalpropertiesorbiologi-calactivityofmoleculesforvirtualscreeningandtoanalyzeomicsdataforcellclassification.TheversatilityofDLmod-elsrendersthemhighlyapplicableinarangeofcontexts.Forexample,clinicalresearchersinvestigatingtheimpactofge-neticvariationsondrugresponsesmightusethesemethodol-ogiestoanalyzegenomicdatafrompatientswithspecificdiseases.Similarly,computationalbiologistsaimingtodevelopadvancedpredictivemodelscanleveragediversedatasetstoexplorevariousmodelingarchitectures,therebyimprovingtheaccuracyofDRpredictions.However,imple-mentingthesemodelsrequiressubstantialexpertiseinDLandsignificantcodingefforts.Thetime-intensiveandcomplexityofadaptingtotheuniqueprogramminginterfa-cesofvariousopen-sourcetoolspresentnonnegligiblechal-lengerequiringresolution.
Received:9September2024;Revised:29October2024;EditorialDecision:11November2024;Accepted:13November2024。TheAuthor(s)2024.PublishedbyOxfordUniversityPress.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(
/licenses/by/4.0/
),whichpermitsunrestrictedreuse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
2JiangandLi
Toaddressthechallengesabove,weintroduceDeepDR(DeepDrugResponse),aPython-basedDLlibrarydesignedforDRprediction.DeepDRincorporatesthreetypesofdrugfeaturesalongwithninedrugencoders,fourtypesofcellfea-turesalongwithninecellencoders,aswellastwofusionmodules.Thiscomprehensiveframeworksupportstheimple-mentationof135models,cateringtoclinicalresearchersandcomputationalbiologistswithlimitedprogrammingback-grounds.Inaddition,wedemonstratetheutilizationofDeepDRbyimplementingandvalidatingmultiplemodelsontheintegrateddatasets,whichhelpstoidentifythemosteffec-tivemodeling.Tofurthersupportresearchers,wedevelopavisualinterfacethatenablesuserswithoutprogrammingex-pertisetoutilizetheoptimalmodels.
2DeepDRlibrary
2.1Datasetframework
2.1.1Featurization
Drugfeaturization.DeepDRoffersthreemodalitiesofdrugfeatures:FP(MolecularFingerprints)(
Lietal.2021a
),SMILES(SimplifiedMolecularInputLineEntrySystem)
(Liu
etal.2019
),andmoleculargraphs
(Liuetal.2020
)(see
Fig.1B
).FParethebinaryvectorrepresentationsofmole-cules
(RogersandHahn2010
).SMILESprovidesaspecifica-tionforencodingmoleculesasstrings
(Weininger1988
).Graphsrepresentmoleculesbyabstractingatomsasnodesandchemicalbondsasedges
(Kearnesetal.2016
).Detailsareavailablein
SupplementaryTextS1
.
A
Cellfeaturization.DeepDRintegratesfourmodalitiesofcellfeatures:expressionprofile(EXP)
(Manicaetal.2019
),pathwayenrichmentscore(PES)
(Chawlaetal.2022
),muta-tionstatus(MUT)
(Liuetal.2019
),andcopynumbervaria-tion(CNV)
(Liuetal.2019
)(see
Fig.1B
).EXPreflectsthequantitativeexpressionlevelsofgenes
(Heller2002
).PESilluminatesthecombinatorialimplicationsamonggeneswithinspecificpathways
(Hnzelmannetal.2013
).MUTreferstothegeneticalterationsorvariationswithinspecificgenes(
Stensonetal.2017
).CNVrepresentsgenomicdele-tionsandduplicationsobservableatthesubmicroscopicscale
(Freemanetal.2006
).Giventhecomplexityofprocessinghigh-dimensionaldata,DeepDRprovidesfeaturesscreenedongenesubsetsinadditiontogenome-widefeatures
(Jiaetal.
2021
).Detailsareprovidedin
SupplementaryTextS2
.
2.1.2Datasetandsplitting
Downloadedfrom
/bioinformatics/article/40/12/btae688/7903283bygueston26December2024
DeepDRintegratestheCancerCellLineEncyclopedia(CCLE)
(Barretinaetal.2019
)andGenomicsofDrugSensitivityinCancer(GDSC)
(Yangetal.2016
),andallowsuserstousetheirowndatasets(see
SupplementaryTextsS3
andS4
).Themeasurementofdrugresponseisquantifiedus-ingseveralparameters:thenaturallogarithm-transformedIC50(HalfMaximalInhibitoryConcentration),AUC(AreaUndertheDose-responseCurve),andActArea(ActivityArea).Tosupportthevalidation,DeepDRincorporatesfourdatasetsplittingstrategies:commonrandom,leave-cell-out,leave-drug-out,andstrictsplit
(Manicaetal.2019
)(see
Fig.1C
).Theleave-cell-outsplitisdesignedtoeliminateanyoverlapofcellsbetweenthetraining,validation,andtestsets.Thisapproachaimstoreplicatethescenariowherethedrugresponseofnewcellstoexistingdrugsisevaluated.Similarly,theleave-drug-outsplitseekstoemulatetheresponseofknowncellstonoveldrugs,whilethestrictsplitisdesignedtosimulatetheresponseofnovelcellstonoveldrugs.
2.2ModelforDRprediction
DeeplearningDRpredictionmodelcanbeformulatedasencodingfordrugsandcellsandfusionofdrugandcellinfor-mation.Inlinewiththisframework,DeepDRhasdevelopedthreeintegralmodules:thedrugencoder,cellencoder,andfusionmodule.Thesecomponentsaredesignedtoprovidethefoundationfortheflexibleconstructionofpredictivemodelsofdrugresponse.Thefeaturesofdrugsandcellsareintroducedintotheencoder.Subsequently,theencodedinfor-mationisintegratedwithinthefusionmoduletogeneratethepredicteddrugresponse(see
Fig.1A
).
2.2.1Drugencoder
DeepDRintegratesnineencoderstailoredtoprocessdrugmoleculardata(see
Fig.1B
).Theseencodersincludethe
Drugencoder
Fusionmodule
Drugfeaturization
Cellencoder
IC50/AUC/ActArea
Valid
Test
Train
Cellfeaturization
B
C
rization
EXPPES
MUT/CNV
A1
A2
B3
C3
A1
A2
B3
C3
A1
A2
B3
C3
A1
A2
B3
C3
Leavecellout
Leavedrugout
Strict
Random
1.Drugfeaturization2.Cellfeatu
FP
SMILES
Graph
C1=C(C(=O)NC(=O)N1)F
FH
N
()
ONO
H
5.Fusionmodule
CNN
DNN
3.Drugencoder
GNNs
DNN
feature
Drug
GRU/LSTM
MHA
CNN
DAE
4.Cellencoder
Cellfeature
DNN
D
01fromDeepDRimportData,Model,CellEncoder,DrugEncoder,FusionModule
02data=Data.DrData(Data.DrRead.PairDef('CCLE','ActArea'),'EXP','Graph').clean()
03train_data,val_data,_=data.split('cell_out',fold=1,ratio=[0.8,0.2,0.0],seed=1)
04train_loader=Data.DrDataLoader(Data.DrDataset(train_data[0]),batch_size=64,shuffle=True)
05val_loader=Data.DrDataLoader(Data.DrDataset(val_data[0]),batch_size=64,shuffle=False)
06model=Model.DrModel(CellEncoder.DNN(6163,100),DrugEncoder.MPG(),FusionModule.DNN(100,768))
07result=Model.Train(model,epochs=100,lr=1e-4,train_loader=train_loader,val_loader=val_loader)
08data.pair_ls=[['CAL120','5-Fluorouracil'],['CAL51','Afuresertib']]
09result=Model.Predict(model=result[0],data=data)
E
Figure1.OverviewofDeepDRlibrary.(A)Thedrugandcellareprocessedthroughfeaturizationandencoder,andthenthedrugresponseisdecoded
usingthefusionmodule.(B)DeepDRprovidesdrugandcellfeaturization,encoder,andfusionmodule.(C)DeepDRprovidessplittingmethods,includingrandomsplit,leave-cell-outsplit,leave-drug-outsplit,andstrictsplit.(D)ProgrammingframeworkofDeepDRfordatasetloading,modelimplementation,training,andinference.(E)Leave-cell-outperformanceontheCCLEdataset.Usingsubsetmeansusingfeaturesscreenedonthegenesubset,rather
thangenome-widefeatures.Thevaluesinparenthesesarestandarddeviations.
Drugresponsepredictionlibrary3
DNN(DeepNeuralNetwork)leveragingmolecularfinger-prints,andarchitecturessuchasCNN(ConvolutionalNeuralNetwork)
(Liuetal.2019
),GRU(GatedRecurrentUnit)
(DeyandSalem2017
),andLSTM(LongShort-TermMemory)
(GravesandGraves2012
)thatarebasedonSMILESrepresentations.Inaddition,itfeaturesGCN(GraphConvolutionalNetwork)
(Zhangetal.2019
),GAT(GraphAttentionNetwork)
(Velickovicetal.2017
),MPG
(Lietal.
2021c
),AttentiveFP
(Xiongetal.2020
),andTrimNet(
Li
etal.2021b
)foranalyzingmoleculargraphs.TheDNNmod-uleencodesthedrugasasingularvector,whiletheotherarchitecturesproduceasequenceofvectors,witheachvectorcorrespondingtoaSMILEScharacteroranatomwithinthemoleculargraph.TheencodersbasedonSMILESandmolec-ulargraphsareintegratedwithanembeddinglayer,whichisinstrumentalingeneratingdensevectors.
2.2.2Cellencoder
Forcellmodeling,DeepDRintegratesnineencoders:DNNbasedonEXP,PES,MUT,orCNV
(Lietal.2021a
);CNNbasedonEXP,PES,MUT,orCNV
(Manicaetal.2019
);andDAE(DenoisingAutoencoder)basedonEXP
(Chenetal.
2022
)(see
Fig.1B
).TheDNNandCNNmodulesaredesignedtocompressthefeaturesofcellsintolow-dimensionalvectors,thusfacilitatingamorecompactandefficientrepresentationofthedata.TheDAE,ontheotherhand,isspecificallypre-trainedtofocusonminimizingthereconstructionlossofcellfeatures,utilizingthehiddenvectorsastheencodingvectorsforthecells.
2.2.3Fusionmodule
Intermsofintegratingdrugandcellinformation,DeepDRprovidestwomethods:aDNNbasedandanMHA(Multi-headAttention)-basedframework(see
Fig.1B
)
(Vaswani
etal.2017
,
Manicaetal.2019
).Thecellencoderisdesignedtoencodethecellasasinglevector,whilethedrugencoderencodesthedrugasasinglevectororseriesofvectors.WithintheDNN-basedframework,aseriesofvectorscanbecondensedintoasinglevectorthroughtechniquessuchasglobalaveragingormaximumpooling.Incontrast,theMHA-basedapproachcalculatesasfollows:
,、
Attention(Q;K;V)=softmaxV(1)
wherethecellvectorisactingasQ.Thedkisthedimensionofvectorsrepresentingthedrug,whichareconsideredasthematricesKandV.Thisleveragestheattentionmechanismtoeffectivelyextracttheinformationoncelldruginteractionsintoonevector.Botharchitecturesshareacommonprocesswherethevectorsforthedrugandcellareeitheraddedorconcatenated,followedbytheirintroductionintoasucces-sionoflinearlayersforthepredictionofdrugresponses.
3ProgrammingframeworkofDeepDR
DeepDRstreamlinestheDRpredictionworkflowintosevenmodularcomponents,eachthoughtfullystructuredasaclassorfunctiontoenhanceconvenience(see
Fig.1D
):(i)UseData.DrDatatoconstructdrugresponsedata,includingcell-drugpairs,correspondingdrugresponses,cellanddrugfeatures.(ii)Use.clean()and.split()tocleanandsplitdrugresponsedata.(iii)InstantiatethedatasetusingData.
DrDataset.(iv)UseData.DrDataLoadertoloadthedatasetformodeltrainingorvalidation.(v)ThenModel.DrModelisutilizedtoconstructtheDRpredictionmodel.(vi)ThemodelistrainedusingModel.Train,whichconcurrentlyevaluatesperformancetoensureefficacy.(vii)Finally,Model.Predictisdeployedtoforecastdrugresponses,leveragingtheknowl-edgegainedfromthetrainedmodel.DeepDRoffersthreekeymetrics:MeanSquaredError(MSE),R-squared(R2),andPearsonCorrelationCoefficient(PCC).
Downloadedfrom
/bioinformatics/article/40/12/btae688/7903283bygueston26December2024
4EstablishingbenchmarksviaDeepDR
Tobenchmarkdrugresponseprediction,weimplementedandevaluated16models,includingtCNNS
(Liuetal.2019
),Precily
(Chawlaetal.2022
),andDeepDSC
(Lietal.2021a
),alongwithother13novelmodels,onCCLEandGDSC2datasets.Weusedleave-cell-outandleave-drug-outsplittingstrategiestosplitthedatasetsintotraining,validation,andtestsets(8:1:1)usingthreerandomseeds.Eachmodelwastrainedfor100epochsusingtheMSElossfunction,withthelearningratetunedfrom{0.001,0.0001,0.00001}.Were-portthemeanandstandarddeviationofmodelperformanceacrossthethreeseeds.Ourfindings
(Fig.1E
and
SupplementaryTablesS1–S3
)highlightthreekeyobserva-tions:(i)optimalrepresentationsaregraphsfordrugsandex-pressionprofilesforcells.(ii)Predictingtheresponseofnoveldrugsisamoresignificantchallenge.(iii)Pre-trainingtechni-quesfacilitateaccuratepredictionofdrugresponse.Furtheranalysisandimplementationdetailscanbefoundin
SupplementaryTextsS5andS6
and
SupplementaryTables
S4–S7
.TheoptimalmodelsdevelopedwithDeepDRareavail-ableonavisualinterfaceat
https://huggingface.co/spaces/
user15632/DeepDR
.
Authorcontributions
ZhengxiangJiang(Methodology,Datacuration,Visualization,Writing—originaldraft,Writing—review&editing),PengyongLi(Conceptualization,Supervision,Investigation,Methodology,Writing—review&editing)
Supplementarydata
Supplementarydata
areavailableatBioinformaticsonline.Conflictofinterest:Nonedeclared.
Funding
ThisworkwassupportedinpartbytheNationalNaturalScienceFoundationofChina[62202353andU22A2037]andtheFundamentalResearchFundsfortheCentralUniversities.
Dataavailability
ThesourcecodeandexperimentaldataareavailableonGitHub:
/user15632/DeepDR
.InstallationofDeepDRinvolvessimplytyping“pipinstalldeepdr.”
References
BaptistaD,FerreiraPG,RochaM.Deeplearningfordrugresponsepre-
dictionincancer.BriefBioinform2021
;22:360–79.
4JiangandLi
BarretinaJ,CaponigroG,StranskyNetal.Addendum:thecancercell
lineencyclopediaenablespredictivemodellingofanticancerdrug
sensitivity.Nature2019
;565:E5–6.
ChawlaS,RockstrohA,LehmanMetal.Geneexpressionbasedinfer-
enceofcancerdrugsensitivity.NatCommun2022
;13:5680.
ChenJ,WangX,MaAetal.Deeptransferlearningofcancerdrug
responsesbyintegratingbulkandsingle-cellRNA-seqdata.Nat
Commun2022
;13:6494.
DeyR,SalemFM.Gate-variantsofgatedrecurrentunit(GRU)
neuralnetworks.In:2017IEEE60thInternationalMidwestSymposium
onCircuitsandSystems(MWSCAS).IEEE,2017
,1597–600.
FreemanJL,PerryGH,FeukLetal.Copynumbervariation:new
insightsingenomediversity.GenomeRes2006
;16:949–61.
GravesA,GravesA.LongShort-TermMemory.SupervisedSequence
LabellingwithRecurrentNeuralNetworks.NewYork,USA:
Springer,2012
,37–45.
HnzelmannS,CasteloR,GuinneyJ.GSVA:genesetvariationanalysis
formicroarrayandRNA-seqdata.BMCBioinformatics2013
;14:7–15.
HellerMJ.DNAmicroarraytechnology:devices,systems,andapplica-
tions.AnnuRevBiomedEng2002
;4:129–53.
JiaP,HuR,PeiGetal.Deepgenerativeneuralnetworkforaccurate
drugresponseimputation.NatCommun2021
;12:1740.
KearnesS,McCloskeyK,BerndlMetal.Moleculargraphconvolu-
tions:movingbeyondfingerprints.JComputAidedMolDes2016
;30:595–608.
LeCunY,BengioY,HintonG.Deeplearning.Nature2015
;521:436–44.
LiM,WangY,ZhengRetal.Deepdsc:adeeplearningmethodtopre-
dictdrugsensitivityofcancercelllines.IEEE/ACMTransComput
BiolBioinform2021a
;18:575–82.
LiP,LiY,HsiehC-Yetal.Trimnet:learningmolecularrepresentation
fromtripletmessagesforbiomedicine.BriefBioinform2021b
;22:bbaa266.
LiP,WangJ,QiaoYetal.Aneffectiveself-supervisedframeworkfor
learningexpressivemolecularglobalrepresentationstodrugdiscov-
ery.BriefBioinform2021c
;22:bbab109.
LiuP,LiH,LiSetal.Improvingpredictionofphenotypicdrugresponse
oncancercelllinesusingdeepconvolutionalnetwork.BMC
Bioinformatics2019
;20:408.
LiuQ,HuZ,Jiang
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中外買方信貸合同常用版(4篇)
- 2025年二手機械設(shè)備買賣協(xié)議標準版本(2篇)
- 2025年人社中心上半年工作總結(jié)模版(三篇)
- 2025年中學教師年終工作總結(jié)參考(二篇)
- 2025年度文化產(chǎn)業(yè)股東合作經(jīng)營合同規(guī)范范本
- 2025年度廣告創(chuàng)意設(shè)計及版權(quán)授權(quán)合同范本
- 2025年度建筑工程施工揚塵污染防治合同樣本
- 2025年度化妝師教學合同范本
- 2025年鄉(xiāng)下魚塘承包合同(三篇)
- 2025年度定制家具生產(chǎn)與銷售聯(lián)合合同
- 杭州市房地產(chǎn)經(jīng)紀服務(wù)合同
- 放射科護理常規(guī)
- 新時代中小學教師職業(yè)行為十項準則
- 人教版八年級上冊英語1-4單元測試卷(含答案)
- 2024年大宗貿(mào)易合作共贏協(xié)議書模板
- 初中數(shù)學教學經(jīng)驗分享
- 新聞記者證600道考試題-附標準答案
- 2024年公開招聘人員報名資格審查表
- TSG ZF001-2006《安全閥安全技術(shù)監(jiān)察規(guī)程》
- 長螺旋鉆孔壓灌樁工程勞務(wù)清包合同(范本)
- 普惠金融政策與區(qū)域差異
評論
0/150
提交評論