四川建筑職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)高級應(yīng)用綜合實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
四川建筑職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)高級應(yīng)用綜合實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
四川建筑職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)高級應(yīng)用綜合實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
四川建筑職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)高級應(yīng)用綜合實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
四川建筑職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)高級應(yīng)用綜合實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁四川建筑職業(yè)技術(shù)學(xué)院

《大數(shù)據(jù)高級應(yīng)用綜合實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在處理時(shí)間序列數(shù)據(jù)時(shí),例如股票價(jià)格的歷史數(shù)據(jù)。假設(shè)要預(yù)測未來一段時(shí)間的股票價(jià)格,以下哪種方法可能會受到數(shù)據(jù)季節(jié)性波動的較大影響?()A.移動平均法B.指數(shù)平滑法C.ARIMA模型D.隨機(jī)森林模型2、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能夠更好地描述數(shù)據(jù)特征。假設(shè)我們有一組學(xué)生的考試成績數(shù)據(jù),以下關(guān)于統(tǒng)計(jì)指標(biāo)選擇的描述,正確的是:()A.計(jì)算均值可以準(zhǔn)確反映學(xué)生成績的平均水平,不受極端值影響B(tài).中位數(shù)能夠避免極端值的干擾,更好地代表成績的一般水平C.眾數(shù)適用于描述成績的集中趨勢,尤其當(dāng)數(shù)據(jù)分布均勻時(shí)D.方差越大,說明學(xué)生成績越穩(wěn)定,教學(xué)質(zhì)量越高3、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問題。為了得到高質(zhì)量、準(zhǔn)確且可用的數(shù)據(jù),以下哪種數(shù)據(jù)清洗方法通常是首先考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用合適的方法填充缺失值,例如使用均值、中位數(shù)或其他統(tǒng)計(jì)值C.對重復(fù)記錄進(jìn)行隨機(jī)選擇保留D.忽略數(shù)據(jù)中的問題,直接進(jìn)行分析4、在數(shù)據(jù)分析中,回歸分析是一種常用的方法。以下關(guān)于回歸分析的描述中,錯(cuò)誤的是?()A.回歸分析可以用來建立變量之間的關(guān)系模型B.回歸分析可以分為線性回歸和非線性回歸兩種類型C.回歸分析的結(jié)果可以用來預(yù)測因變量的值D.回歸分析只能用于預(yù)測連續(xù)型變量,對于分類型變量無法處理5、數(shù)據(jù)分析中,數(shù)據(jù)倉庫的架構(gòu)設(shè)計(jì)需要考慮多方面因素。以下關(guān)于數(shù)據(jù)倉庫架構(gòu)設(shè)計(jì)的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉庫的架構(gòu)設(shè)計(jì)應(yīng)包括數(shù)據(jù)源、數(shù)據(jù)存儲、數(shù)據(jù)處理和數(shù)據(jù)訪問等部分B.數(shù)據(jù)倉庫的架構(gòu)設(shè)計(jì)應(yīng)考慮數(shù)據(jù)的規(guī)模、增長速度和使用頻率等因素C.數(shù)據(jù)倉庫的架構(gòu)設(shè)計(jì)可以采用分層架構(gòu),將數(shù)據(jù)分為不同的層次進(jìn)行管理D.數(shù)據(jù)倉庫的架構(gòu)設(shè)計(jì)一旦確定就不能再進(jìn)行調(diào)整和優(yōu)化,否則會影響系統(tǒng)的穩(wěn)定性6、假設(shè)正在分析一個(gè)網(wǎng)站的用戶行為數(shù)據(jù),以優(yōu)化網(wǎng)站布局。以下關(guān)于用戶行為分析的描述,正確的是:()A.只關(guān)注用戶的點(diǎn)擊次數(shù),就能了解用戶的興趣和偏好B.頁面停留時(shí)間越短,說明用戶對該頁面越感興趣C.分析用戶的訪問路徑可以發(fā)現(xiàn)網(wǎng)站的熱門頁面和流程瓶頸D.用戶的注冊信息對分析用戶行為沒有幫助7、在進(jìn)行假設(shè)檢驗(yàn)時(shí),如果p值小于設(shè)定的顯著性水平(如0.05),我們通常會得出以下哪種結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無法確定是否拒絕原假設(shè)D.需要重新進(jìn)行實(shí)驗(yàn)8、在數(shù)據(jù)分析中,對于一個(gè)包含大量金融交易數(shù)據(jù)的數(shù)據(jù)集,需要檢測是否存在異常交易行為,例如突然的大額交易、頻繁的小額交易等。以下哪種技術(shù)可能在異常檢測中發(fā)揮重要作用?()A.聚類分析B.決策樹C.孤立森林算法D.以上都不是9、數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同項(xiàng)之間的關(guān)聯(lián)關(guān)系。假設(shè)我們在分析超市的銷售數(shù)據(jù),想要找出經(jīng)常一起被購買的商品組合,以下哪個(gè)關(guān)聯(lián)規(guī)則度量指標(biāo)可以用來評估規(guī)則的強(qiáng)度?()A.支持度B.置信度C.提升度D.以上都是10、某電商平臺想要了解商品銷量與廣告投入之間的關(guān)系,收集了大量數(shù)據(jù)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,不正確的是?()A.檢查數(shù)據(jù)的完整性B.直接刪除所有缺失值C.處理異常值D.對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化11、在數(shù)據(jù)分析的市場調(diào)研中,假設(shè)要了解消費(fèi)者對新產(chǎn)品的偏好和需求。以下哪種數(shù)據(jù)收集方法可能獲得更深入和真實(shí)的反饋?()A.在線調(diào)查問卷B.面對面訪談C.電話調(diào)查D.不進(jìn)行調(diào)研,依靠以往經(jīng)驗(yàn)推測12、在進(jìn)行數(shù)據(jù)可視化時(shí),若要同時(shí)展示多個(gè)變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點(diǎn)圖矩陣B.雷達(dá)圖C.熱力圖D.樹狀圖13、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在部分缺失值、錯(cuò)誤值和重復(fù)數(shù)據(jù)。如果不進(jìn)行有效的數(shù)據(jù)清洗,直接進(jìn)行數(shù)據(jù)分析,可能會導(dǎo)致什么樣的結(jié)果?()A.分析結(jié)果不準(zhǔn)確,得出錯(cuò)誤的結(jié)論B.分析速度加快,提高工作效率C.能夠發(fā)現(xiàn)更多隱藏的信息和模式D.對分析結(jié)果沒有任何影響14、在數(shù)據(jù)分析中,若要比較多個(gè)總體的均值是否相等,以下哪種方法較為常用?()A.方差分析B.多重比較C.假設(shè)檢驗(yàn)D.以上都是15、在數(shù)據(jù)庫中,若要執(zhí)行事務(wù)處理以確保數(shù)據(jù)的一致性,以下哪個(gè)特性是關(guān)鍵的?()A.原子性B.一致性C.隔離性D.持久性16、在構(gòu)建數(shù)據(jù)分析模型時(shí),模型評估指標(biāo)是衡量模型性能的重要依據(jù)。假設(shè)你建立了一個(gè)客戶流失預(yù)測模型,以下關(guān)于評估指標(biāo)的選擇,哪一項(xiàng)是最能反映模型實(shí)際效果的?()A.準(zhǔn)確率,即正確預(yù)測的比例B.召回率,即正確預(yù)測流失客戶的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量預(yù)測值與實(shí)際值的差異17、在數(shù)據(jù)庫中,若要提高數(shù)據(jù)的寫入性能,以下哪種存儲引擎可能更適合?()A.InnoDBB.MyISAMC.MemoryD.Archive18、假設(shè)要分析一個(gè)電商平臺的用戶評論數(shù)據(jù),以提取用戶的意見和情感傾向。以下哪種自然語言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識別D.以上都是19、數(shù)據(jù)分析在醫(yī)療領(lǐng)域有著重要的應(yīng)用。以下關(guān)于數(shù)據(jù)分析在醫(yī)療中的作用,不準(zhǔn)確的是()A.可以幫助醫(yī)療機(jī)構(gòu)分析患者的病歷數(shù)據(jù),優(yōu)化治療方案,提高醫(yī)療質(zhì)量B.通過對醫(yī)療影像數(shù)據(jù)的分析,輔助疾病的診斷和篩查C.利用傳感器收集的實(shí)時(shí)健康數(shù)據(jù)進(jìn)行監(jiān)測和預(yù)警,實(shí)現(xiàn)個(gè)性化的醫(yī)療服務(wù)D.數(shù)據(jù)分析在醫(yī)療領(lǐng)域的應(yīng)用還處于初級階段,對醫(yī)療實(shí)踐的影響非常有限20、對于一個(gè)不平衡的數(shù)據(jù)集(例如,某一類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別),以下哪種方法可以提高模型對少數(shù)類別的識別能力?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是21、在時(shí)間序列數(shù)據(jù)分析中,除了預(yù)測未來值,還可以進(jìn)行季節(jié)性分析。假設(shè)我們有一個(gè)銷售數(shù)據(jù)的時(shí)間序列,顯示出明顯的季節(jié)性特征,以下哪種方法可以用于提取和分析季節(jié)性成分?()A.季節(jié)指數(shù)法B.移動平均季節(jié)分解法C.加法模型D.以上都是22、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能夠準(zhǔn)確地描述數(shù)據(jù)特征。假設(shè)我們正在分析一組學(xué)生的考試成績。以下關(guān)于統(tǒng)計(jì)指標(biāo)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.平均數(shù)能夠反映數(shù)據(jù)的集中趨勢,但容易受到極端值的影響B(tài).中位數(shù)不受極端值的影響,能更穩(wěn)健地表示數(shù)據(jù)的中心位置C.標(biāo)準(zhǔn)差越大,說明數(shù)據(jù)的離散程度越小,數(shù)據(jù)越穩(wěn)定D.方差是標(biāo)準(zhǔn)差的平方,同樣可以反映數(shù)據(jù)的離散程度23、在數(shù)據(jù)分析中,評估模型的性能是重要的環(huán)節(jié)。假設(shè)我們已經(jīng)建立了一個(gè)預(yù)測模型。以下關(guān)于模型評估的描述,哪一項(xiàng)是不正確的?()A.可以使用交叉驗(yàn)證來評估模型的穩(wěn)定性和泛化能力B.混淆矩陣可以幫助我們分析模型在不同類別上的預(yù)測情況C.準(zhǔn)確率是評估模型性能的唯一指標(biāo),準(zhǔn)確率越高模型越好D.可以根據(jù)具體問題選擇合適的評估指標(biāo),如召回率、F1值等24、在進(jìn)行回歸分析時(shí),如果自變量之間存在高度的多重共線性,會對模型產(chǎn)生什么影響?()A.提高模型的準(zhǔn)確性B.使模型更易于解釋C.導(dǎo)致系數(shù)估計(jì)不準(zhǔn)確D.增加模型的穩(wěn)定性25、數(shù)據(jù)分析中的主成分分析(PCA)用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集。以下關(guān)于主成分分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.主成分是原始變量的線性組合,能夠保留數(shù)據(jù)的主要信息B.通過計(jì)算協(xié)方差矩陣的特征值和特征向量來確定主成分C.主成分分析可以消除變量之間的相關(guān)性,使數(shù)據(jù)更易于分析D.主成分分析后的維度數(shù)量是固定的,不能根據(jù)需要進(jìn)行調(diào)整二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)在數(shù)據(jù)可視化中,如何設(shè)計(jì)適合移動端的可視化界面?請說明移動端可視化的特點(diǎn)和設(shè)計(jì)原則,并舉例說明。2、(本題5分)闡述數(shù)據(jù)分析師如何處理多源異構(gòu)數(shù)據(jù),包括數(shù)據(jù)整合、轉(zhuǎn)換和清洗的方法,并舉例說明在實(shí)際項(xiàng)目中的應(yīng)用。3、(本題5分)解釋什么是圖神經(jīng)網(wǎng)絡(luò)(GNN),說明其在圖結(jié)構(gòu)數(shù)據(jù)分析中的應(yīng)用和優(yōu)勢,并舉例分析。4、(本題5分)解釋什么是數(shù)據(jù)偏斜,說明其在數(shù)據(jù)分析中的影響,并列舉至少兩種解決數(shù)據(jù)偏斜問題的方法和適用場景。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線家具定制平臺收集了用戶需求數(shù)據(jù)、設(shè)計(jì)方案、生產(chǎn)進(jìn)度等。提高定制家具的生產(chǎn)效率和用戶滿意度。2、(本題5分)一家連鎖書店的文學(xué)作品區(qū)域記錄了銷售數(shù)據(jù),包括作品體裁、作者國籍、銷量、價(jià)格、讀者年齡等。研究不同體裁和作者國籍的文學(xué)作品在不同年齡讀者中的銷售情況。3、(本題5分)某游戲公司記錄了玩家的游戲行為、充值記錄、在線時(shí)長等數(shù)據(jù)。探討如何利用這些數(shù)據(jù)提高游戲的用戶留存率和盈利能力。4、(本題5分)某汽車制造商收集了車輛的質(zhì)量檢測數(shù)據(jù)、用戶反饋、售后服務(wù)記錄等。思考如何通過這些數(shù)據(jù)提升產(chǎn)品質(zhì)量和售后服務(wù)水平。5、(本題5分)一家茶葉專賣店收集了茶葉銷售數(shù)據(jù)、顧客品鑒反饋、茶葉產(chǎn)地信息等。優(yōu)化茶葉采購和銷售策略,滿足顧客口味需求。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)對于企

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論