版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省龍巖第二中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線(xiàn)C的兩條漸近線(xiàn)的夾角為60°,則雙曲線(xiàn)C的方程不可能為()A. B. C. D.2.已知,,分別是三個(gè)內(nèi)角,,的對(duì)邊,,則()A. B. C. D.3.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.4.M、N是曲線(xiàn)y=πsinx與曲線(xiàn)y=πcosx的兩個(gè)不同的交點(diǎn),則|MN|的最小值為()A.π B.π C.π D.2π5.在正方體中,E是棱的中點(diǎn),F(xiàn)是側(cè)面內(nèi)的動(dòng)點(diǎn),且與平面的垂線(xiàn)垂直,如圖所示,下列說(shuō)法不正確的是()A.點(diǎn)F的軌跡是一條線(xiàn)段 B.與BE是異面直線(xiàn)C.與不可能平行 D.三棱錐的體積為定值6.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知函數(shù)是定義在R上的奇函數(shù),且滿(mǎn)足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為()A. B.3 C. D.8.已知空間兩不同直線(xiàn)、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于9.函數(shù)的定義域?yàn)椋ǎ〢.或 B.或C. D.10.已知雙曲線(xiàn)的焦距為,過(guò)左焦點(diǎn)作斜率為1的直線(xiàn)交雙曲線(xiàn)的右支于點(diǎn),若線(xiàn)段的中點(diǎn)在圓上,則該雙曲線(xiàn)的離心率為()A. B. C. D.11.已知等差數(shù)列的前項(xiàng)和為,若,則等差數(shù)列公差()A.2 B. C.3 D.412.展開(kāi)式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.1280二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,滿(mǎn)足,,且已知向量,的夾角為,,則的最小值是__.14.設(shè)滿(mǎn)足約束條件且的最小值為7,則=_________.15.若,則的展開(kāi)式中含的項(xiàng)的系數(shù)為_(kāi)______.16.已知橢圓的左右焦點(diǎn)分別為,過(guò)且斜率為的直線(xiàn)交橢圓于,若三角形的面積等于,則該橢圓的離心率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知集合,.(1)若,則;(2)若,求實(shí)數(shù)的取值范圍.18.(12分)已知A是拋物線(xiàn)E:y2=2px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線(xiàn)x=1于M,N兩點(diǎn).(1)若|MN|=2,求拋物線(xiàn)E的方程;(2)若0<p<1,拋物線(xiàn)E與圓(x﹣5)2+y2=9在x軸上方的交點(diǎn)為P,Q,點(diǎn)G為PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線(xiàn)OG斜率的取值范圍.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對(duì)任意成立,求實(shí)數(shù)的取值范圍.20.(12分)已知橢圓的右焦點(diǎn)為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線(xiàn)與橢圓相交于、兩點(diǎn),、分別為線(xiàn)段、的中點(diǎn),若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.21.(12分)在平面直角坐標(biāo)系中,曲線(xiàn),曲線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線(xiàn)、的極坐標(biāo)方程;(2)在極坐標(biāo)系中,射線(xiàn)與曲線(xiàn),分別交于、兩點(diǎn)(異于極點(diǎn)),定點(diǎn),求的面積22.(10分)在直角坐標(biāo)系x0y中,把曲線(xiàn)α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程(1)寫(xiě)出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
判斷出已知條件中雙曲線(xiàn)的漸近線(xiàn)方程,求得四個(gè)選項(xiàng)中雙曲線(xiàn)的漸近線(xiàn)方程,由此確定選項(xiàng).【詳解】?jī)蓷l漸近線(xiàn)的夾角轉(zhuǎn)化為雙曲漸近線(xiàn)與軸的夾角時(shí)要分為兩種情況.依題意,雙曲漸近線(xiàn)與軸的夾角為30°或60°,雙曲線(xiàn)的漸近線(xiàn)方程為或.A選項(xiàng)漸近線(xiàn)為,B選項(xiàng)漸近線(xiàn)為,C選項(xiàng)漸近線(xiàn)為,D選項(xiàng)漸近線(xiàn)為.所以雙曲線(xiàn)的方程不可能為.故選:C【點(diǎn)睛】本小題主要考查雙曲線(xiàn)的漸近線(xiàn)方程,屬于基礎(chǔ)題.2、C【解析】
原式由正弦定理化簡(jiǎn)得,由于,可求的值.【詳解】解:由及正弦定理得.因?yàn)?,所以代入上式化?jiǎn)得.由于,所以.又,故.故選:C.【點(diǎn)睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,屬于中檔題.3、D【解析】
根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.4、C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.5、C【解析】
分別根據(jù)線(xiàn)面平行的性質(zhì)定理以及異面直線(xiàn)的定義,體積公式分別進(jìn)行判斷.【詳解】對(duì)于,設(shè)平面與直線(xiàn)交于點(diǎn),連接、,則為的中點(diǎn)分別取、的中點(diǎn)、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線(xiàn)平面平面,由此結(jié)合平面,可得直線(xiàn)平面,即點(diǎn)是線(xiàn)段上上的動(dòng)點(diǎn).正確.對(duì)于,平面平面,和平面相交,與是異面直線(xiàn),正確.對(duì)于,由知,平面平面,與不可能平行,錯(cuò)誤.對(duì)于,因?yàn)?,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點(diǎn)睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.6、A【解析】
利用復(fù)數(shù)的除法運(yùn)算化簡(jiǎn),求得對(duì)應(yīng)的坐標(biāo),由此判斷對(duì)應(yīng)點(diǎn)所在象限.【詳解】,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)所在象限,屬于基礎(chǔ)題.7、B【解析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.8、C【解析】因答案A中的直線(xiàn)可以異面或相交,故不正確;答案B中的直線(xiàn)也成立,故不正確;答案C中的直線(xiàn)可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線(xiàn)也有可能垂直于直線(xiàn),故不正確.應(yīng)選答案C.9、A【解析】
根據(jù)偶次根式被開(kāi)方數(shù)非負(fù)可得出關(guān)于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域?yàn)榛?故選:A.【點(diǎn)睛】本題考查具體函數(shù)定義域的求解,考查計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】
設(shè)線(xiàn)段的中點(diǎn)為,判斷出點(diǎn)的位置,結(jié)合雙曲線(xiàn)的定義,求得雙曲線(xiàn)的離心率.【詳解】設(shè)線(xiàn)段的中點(diǎn)為,由于直線(xiàn)的斜率是,而圓,所以.由于是線(xiàn)段的中點(diǎn),所以,而,根據(jù)雙曲線(xiàn)的定義可知,即,即.故選:C【點(diǎn)睛】本小題主要考查雙曲線(xiàn)的定義和離心率的求法,考查直線(xiàn)和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.11、C【解析】
根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.12、A【解析】
根據(jù)二項(xiàng)式展開(kāi)式的公式得到具體為:化簡(jiǎn)求值即可.【詳解】根據(jù)二項(xiàng)式的展開(kāi)式得到可以第一個(gè)括號(hào)里出項(xiàng),第二個(gè)括號(hào)里出項(xiàng),或者第一個(gè)括號(hào)里出,第二個(gè)括號(hào)里出,具體為:化簡(jiǎn)得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類(lèi)型及解題策略:(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點(diǎn)O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設(shè),由題,得,又,所以,則點(diǎn)C在以AB為直徑的圓上,取AB的中點(diǎn)為M,則,設(shè)以AB為直徑的圓與線(xiàn)段OM的交點(diǎn)為E,則的最小值是,因?yàn)椋?,所以的最小值?故答案為:【點(diǎn)睛】本題主要考查向量的綜合應(yīng)用問(wèn)題,涉及到圓的相關(guān)知識(shí)與余弦定理,考查學(xué)生的分析問(wèn)題和解決問(wèn)題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.14、3【解析】
根據(jù)約束條件畫(huà)出可行域,再把目標(biāo)函數(shù)轉(zhuǎn)化為,對(duì)參數(shù)a分類(lèi)討論,當(dāng)時(shí)顯然不滿(mǎn)足題意;當(dāng)時(shí),直線(xiàn)經(jīng)過(guò)可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,再由最小值為7,得出結(jié)果;當(dāng)時(shí),的截距沒(méi)有最小值,即z沒(méi)有最小值;當(dāng)時(shí),的截距沒(méi)有最大值,即z沒(méi)有最小值,綜上可得出結(jié)果.【詳解】根據(jù)約束條件畫(huà)出可行域如下:由,可得出交點(diǎn),由可得,當(dāng)時(shí)顯然不滿(mǎn)足題意;當(dāng)即時(shí),由可行域可知當(dāng)直線(xiàn)經(jīng)過(guò)可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,即,解得或(舍);當(dāng)即時(shí),由可行域可知的截距沒(méi)有最小值,即z沒(méi)有最小值;當(dāng)即時(shí),根據(jù)可行域可知的截距沒(méi)有最大值,即z沒(méi)有最小值.綜上可知滿(mǎn)足條件時(shí).故答案為:3.【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃問(wèn)題,約束條件和目標(biāo)函數(shù)中都有參數(shù),要對(duì)參數(shù)進(jìn)行討論.15、【解析】
首先根據(jù)定積分的應(yīng)用求出的值,進(jìn)一步利用二項(xiàng)式的展開(kāi)式的應(yīng)用求出結(jié)果.【詳解】,根據(jù)二項(xiàng)式展開(kāi)式通項(xiàng):,令,解得,所以含的項(xiàng)的系數(shù).故答案為:【點(diǎn)睛】本題考查定積分,二項(xiàng)式的展開(kāi)式的應(yīng)用,主要考查學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】
由題得直線(xiàn)的方程為,代入橢圓方程得:,設(shè)點(diǎn),則有,由,且解出,進(jìn)而求解出離心率.【詳解】由題知,直線(xiàn)的方程為,代入消得:,設(shè)點(diǎn),則有,,而,又,解得:,所以離心率.故答案為:【點(diǎn)睛】本題主要考查了直線(xiàn)與橢圓的位置關(guān)系,三角形面積計(jì)算與離心率的求解,考查了學(xué)生的運(yùn)算求解能力三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)將代入可得集合B,解對(duì)數(shù)不等式可得集合A,由并集運(yùn)算即可得解.(2)由可知B為A的子集,即;當(dāng)符合題意,當(dāng)B不為空集時(shí),由不等式關(guān)系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因?yàn)?,故;若,即時(shí),,符合題意;若,即時(shí),,解得;綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了集合的并集運(yùn)算,由集合的包含關(guān)系求參數(shù)的取值范圍,注意討論集合是否為空集的情況,屬于基礎(chǔ)題.18、(1).(2)【解析】
(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線(xiàn)x=1的距離.由半個(gè)弦長(zhǎng),圓心到直線(xiàn)的距離及半徑構(gòu)成直角三角形可得p的值,進(jìn)而求出拋物線(xiàn)的方程;(2)將拋物線(xiàn)的方程與圓的方程聯(lián)立可得韋達(dá)定理,進(jìn)而求出中點(diǎn)G的坐標(biāo),再求出直線(xiàn)OG的斜率的表達(dá)式,換元可得斜率的取值范圍.【詳解】(1)設(shè)A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線(xiàn)x=1的距離d=|1|=||,因?yàn)閨MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以?huà)佄锞€(xiàn)的方程為:y2=4x;(2)聯(lián)立拋物線(xiàn)與圓的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,設(shè)P(x1,y1),Q(x2,y2),則x1+x2=2(5﹣p),x1x2=16,所以中點(diǎn)G的橫坐標(biāo)xG=5﹣p,yG(),所以kOG(0<P<1),令t=5﹣p(t∈(4,5)),則kOG(),解得0<kOG,所以直線(xiàn)OG斜率的取值范圍(0,).【點(diǎn)睛】本題考查拋物線(xiàn)的性質(zhì)及直線(xiàn)與拋物線(xiàn)的綜合,換元方法的應(yīng)用,屬于中檔題.19、(1)(2)【解析】
(1)把代入,利用零點(diǎn)分段討論法求解;(2)對(duì)任意成立轉(zhuǎn)化為求的最小值可得.【詳解】解:(1)當(dāng)時(shí),不等式可化為.討論:①當(dāng)時(shí),,所以,所以;②當(dāng)時(shí),,所以,所以;③當(dāng)時(shí),,所以,所以.綜上,當(dāng)時(shí),不等式的解集為.(2)因?yàn)?,所?又因?yàn)椋瑢?duì)任意成立,所以,所以或.故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查含有絕對(duì)值不等式的解法及恒成立問(wèn)題,恒成立問(wèn)題一般是轉(zhuǎn)化為最值問(wèn)題求解,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、(1);(2).【解析】
(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn)、,聯(lián)立直線(xiàn)與橢圓的方程,列出韋達(dá)定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因?yàn)椋?,所以橢圓的方程為;(2)由,得.設(shè)、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因?yàn)?,,所?即,將其整理為.因?yàn)?,所以?所以,即.【點(diǎn)睛】本題考查橢圓方程的求法和直線(xiàn)與橢
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年車(chē)輛以租代購(gòu)產(chǎn)權(quán)轉(zhuǎn)移協(xié)議版B版
- 2024版地下室防水施工協(xié)議3篇
- 專(zhuān)業(yè)噴漆團(tuán)隊(duì)修理廠承包合同書(shū)版B版
- 2025年度網(wǎng)絡(luò)安全防護(hù)合同范本:信息安全合作協(xié)議3篇
- 2024廢鋼居間合同范本
- 2024重慶市民離婚協(xié)商一致合同樣本版B版
- 行車(chē)?yán)碚撝R(shí)培訓(xùn)課件
- 2024年高速公路交通信號(hào)燈施工合同
- 熟食類(lèi)食品知識(shí)培訓(xùn)課件
- 鋁擠壓修模知識(shí)培訓(xùn)課件
- 空調(diào)年度巡檢報(bào)告范文
- 線(xiàn)上推廣授權(quán)合同范例
- 保定學(xué)院《大學(xué)英語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年九年級(jí)語(yǔ)文上冊(cè)部編版期末綜合模擬試卷(含答案)
- 鄉(xiāng)村振興暨干部素質(zhì)提升培訓(xùn)班學(xué)習(xí)心得體會(huì)
- 靜脈輸液反應(yīng)急救流程
- IATF16949:2024標(biāo)準(zhǔn)質(zhì)量手冊(cè)
- 反詐知識(shí)競(jìng)賽題庫(kù)及答案(共286題)
- 2025屆江蘇省淮安市高三一模語(yǔ)文試題講評(píng)課件
- 青島版二年級(jí)下冊(cè)數(shù)學(xué)三位數(shù)退位減法豎式計(jì)算題200道及答案
- 2024-2025年高考英語(yǔ)全國(guó)卷分類(lèi)匯編之完型填空
評(píng)論
0/150
提交評(píng)論