




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TheAlchemyofIntelligence:
HowGenerativeAIcan
revolutionizeBusiness
IntelligenceandAnalyticsinModernEnterprises
TableofContent
Introduction 03
BusinessUser 04
Opportunities 04
Challenges 04
Recommendations 07
BusinessAnalyst 08
Opportunities 08
Productivity 08
ProgrammingforNon-Programmers 10
Insights 10
Beautification 11
Challenges 12
Usefulness 12
Trust 13
HumanErrorandDocumentation 14
Security 14
Recommendations 15
Test 15
Adopt 16
Train 16
DataAnalyst/CitizenDataScientist 17
Dylan’sTransformation 18
ArrivalofAIAgent 19
ATeamofAgentsEmerges 21
Summary 21
ITAdministrator 22
InfrastructureDemands 22
DataGovernanceandSecurity 23
Observations 24
SystemArchitect 25
Opportunities 25
Challenges 26
Recommendations 26
Summary 27
Conclusion 27
Authors 28
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA2
Introduction
Intherapidlyevolvinglandscapeoftechnology,businessesare
constantlysearchingforinnovativewaystostayaheadofthe
curve.OnesuchgroundbreakingadvancementisGenerativeAI,atechnologythathasthepotentialtoreshapethefutureofBusinessIntelligence(BI)andanalytics.Imagineaworldwheredataspeaksdirectlytoyou,whereyouranalyticstoolsnotonlyansweryour
queriesbutalsoanticipateyourneeds,providinginsightsyouhadn’tevenconsidered.ThisisthepromiseofGenerativeAI–atoolthattransformsrawdataintorich,actionableintelligence,empoweringbusinessestomakesmarter,fasterdecisions.
Thejourneythroughthiswhitepaperwilltakeyouintotheheartofthisrevolution.We’llexplorereal-worldscenarioswhere
GenerativeAIactsasacatalystforenhancedproductivity,sharperinsights,andmorebeautifuldatavisualizations.Frombusiness
userslikePeggySue,whoexperiencethemagicofAI-powered
chatbots,todatascientistslikeDylanDawson,wholeverage
generativemodelsforunprecedenteddataanalysis,thenarrativeunfoldstorevealbothopportunitiesandchallenges.Bytheendofthisexploration,youwillunderstandnotonlythetransformativepowerofGenerativeAIbutalsohowtoharnessiteffectively
withinyourenterprise.Forsimplicity,wehavebrokenthisintovariousreal-worldpersonas.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA3
BusinessUser
UsesdashboardsandreportsgeneratedbyBItoolstomakeinformedstrategicdecisions.
Businessusers,likePeggySue,aretheworkerbeesofany
corporatehive.Checkingnumbershere.Doingtheworkthat
needstodobedonethere.Buzz.Buzz.Buzz.Thissectionexplorestheuniqueopportunities,challengesandrecommendationsfor
otherslikePeggySue.
Opportunities
PeggySuewasthrilledtohavethischancetolaunchhercareerwithaglobalbeerdistributioncompanyknownforthequalityofitsbeersandforbeingarealhigh-techleaderintheindustry.ShehadmanycoursesattheUniversitysheattendedondashboardsandanalytics,andtheyreallypaidoffforherduringherfirst6
months.Neverdidadaygobywhenshedidn’tseepostsonherLinkedInfromthisgoodfriend,orthatfriend,ravingabouttheirexperienceswithsometypeofgenerativeaichatbots.
Shewasthrilledthedayshereceivedanemailstatingthat
herorganizationwouldbegettingachatbotalongsidetheir
dashboards.Suddenlythereitwas,andPeggySue’sheartwasallaflutterwiththepossibilities.
Everythingshereadusedphraseslike“Gamechanging”“makeslifesomucheasier”“willreplaceallworkerseverywhere”somepostersmightaswellhaveusedthewords“hocuspocusdominocus”
becauseitsoundedlikemagic.
PeggySue’smindwasracing“LookatthebeautifulinputboxwhereitsaysIcanaskanything.”UnfortunatelyforPeggySueanother
thoughtstruck,“Icanaskanything,butIhavenoideawhattoask”
Challenges
Whilemanyorganizationsrushtogetabotintothehandsof
businessusers,blankcanvasparalysiscantakeoverbecausetheyfocusedonthetechnology,andnottrainingtheirstaffhowtouseit.
EventuallyPeggySuebeganaskingthequestionsastheycame
tohermind“TellmethetotalsalesforourbeerinSouthAmerica.”
“WhichlocationissellingthemostofourPorters?”“Whichdivisionisn’tdoingwellfinancially?”Eachofherquestionsreceivedananswer.
Thechallengeforherwasthatmostanswersjustseemedwrong.Whenshedugintothedetailedrecordsinherdashboard,she
confirmedtheywerewrong.“Well,Ireckonthisthingisn’tverygoodatmath.WhydidtheygivethisthingtomeifIcan’taskittoaddupnumbers?”
Othertimesthefigureswereaboutmeasuresthatsheknewthecompanyhadmultiplewaysofcalculating.“Thisanswermayberightforoneofthemeasures,buttheanswerdoesn’texplainwhichcalculationmethodisevenused.Evenifitsaccurateforonemethod,Ihavenowayofknowingforsureit’sthemethodmybossexpectstosee.”
“Maybeit’stheresoIcanaskquestionsaboutthedashboarditself”
shethoughttoherself.Whichwasgoodbecausealthoughshehadreceived10minutesoftrainingfromafranticallybusytrainer,shedidn’tremembereverything.So,sheasked“HowdoIfigureout
whichdivisionisstrugglingonmydashboard?”
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA4
Whilethoughtprovoking,shewashopingforspecificinformationaboutthedashboardshewaslookingat.Afterafewquestionslikethisshegotalittleworriedthatperhapsmanagementwastrackingherquestionsandthatifshekeptaskingquestionslikethis,she
mightbereprimandedforhavingnotalreadylearnedeverythingaboutthedashboardevenafterthewhopping10minutesof
trainingshehadreceived.
Onedayasshewasreviewingsomequarterlyfiguresandhercolleagueswereoutoftheoffice,somethingstruckher:
“MaybeIshouldbeaskingthesametypeofquestionsInormallyaskthem.”So,shedid:“WhataresomereasonsthatcouldexplainwhywearesellingsomuchmoreBrownAlethanotherbeers?”
Atthatmomentalightbulbwentoff,andachoruswassinginginPeggySue’shead.Assheproceededwithheranalysis,shewasagaincuriousaboutthedata.Althoughsalesweresohighfor
BrownAle,theprofitsweren’t.
Shequicklytyped“Whataresomereasonswearenotmaking
muchprofitonbrownaleconsideringwesellsomuchofit?”intothehandylittle“AskAnything”inputboxandwasagainimpressedwiththeresponse.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA5
PeggySuewasinspiredbythispatternofaskingwhenshewas
puzzledaboutwhatcouldexplainthingsthatshedidn’tseeinthebarchartsandpiechartsandlinechartsonthescreen.Aftera
meetingonedaywheresheheardaboutacontestthecompanywashavingwhereanyemployeescouldmakesuggestions
abouthowtoincreasesalesshedecidedtogetreallyboldinherquestioning:“CanyoutellmeculturallywhywearesellingsomuchBrownAlewherewedoandwhatotherculturesaresimilarthatwecouldstartsellingitto?”
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA6
Recommendations
Whileonthecruiseshetookafterwinninghercompany’s
suggestioncontest,PeggySuehadmanychancestorecount
herexperiencestodatewithGenerativeAIinsidehercompany’sBusinessIntelligencetooltootherpassengers.
?Don’taskquestionsofanykindthatinvolvemath.
?Realanswerstorealbusinessproblemstypicallyinvolvecomplicatedbooleanlogicthatturnthemillionsofrows/columnsofdataintotruth,thatyourmodelmaynothaveaccessto.
?Don’taskforanswers,askforadvice.Answersimplyyouaredoneandwillact,butadviceimpliesyouwillaugmentthe
inputwithyourownknowledgethenact.
Onepassengershetalkedtooveroneofthosetalldrinkswith
fruitwedgesandanumbrellasaid“Wehave175differentBI
applicationsthatIworkwith.Whichoneofthemdoyouthinkis
therightonetostartusingwithoneofthoselargelanguagemodel
chatbotthingamajiggies?”PeggySuehadafewbitsofadviceforhim:
?TheoneusedbythegroupthatyouhaveprovidedsomeAILiteracytrainingtobeforehand.
?Theonethatyourbusinessuserspeekoverthecubiclewallsandchatwitheachotherthemostabout.
Storytellingasideforamoment...thebiggestrecommendationwecanofferforBusinessUsersistothinkofyourGenerativeAIchatbotslikeyouwouldanyothertrustedadvisorinyourlife.
?Theyaren’tgoingtodoyourworkforyou.
?Theywon’talwaysprovideadviceyouagreewith.
?Unlikeotheradvisorsinyourlife,theyarenevertoobusyforyoutoask,andtheynevergetoffendedwhenyouaskthe
samequestion10differentways.
?Youarestillultimatelyresponsibleforyourwork,soalwaysuseyourownintelligencetoaugmentanyadviceyoumayreceive.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA7
BusinessAnalyst
WorkscloselywithstakeholderstounderstandbusinessrequirementsandusesBItoolstocreatereports,dashboards,andvisualizations.
Let’srewindtheclocksixmonthspriorandlookathowPeggy
Sue’snewBIcopilotcametobe.SallySue,theunstoppable
business-analyst-turned-datascientist,hasbeenexperimentingwithGenerativeAIforhercodingtasks.Copilotsareexcellentatgeneratingcodeandsummarizinglargeamountsoftext,andherbusinessrecentlyadoptedaBItoolthathasacopilotbuiltintoit.“Wow!”shethought.“Icananalyzemydataandbuilddashboardsjustbyaskingquestions?”Sallywasthrilledattheidea–aswas
herCIO.Canyouimaginethenumberofquestionsthatcouldbequicklyansweredifpeoplecouldchatwiththeirdataanddashboards?
Beyondtheexcitement,Sallyrealizedthatthereareseveral
potentialrisks.She’staskedwithevaluatingthiscopilotfor
productionandsendingitovertobusinessuserslikePeggy
Sue.WhatkindsofquestionsmightPeggyask?Whatkindof
dashboardswouldpeoplebuildwiththis?Howdowecertifythisforproductionuse?Whataboutdatasecurity?Isthereavariablecosttousethis?ThereareanumberofquestionsthatcametoSally’smind.Shebrokeherquestionsdownintotwomainareas:opportunitiesandchallenges.
Opportunities
GenerativeAIbringsampleopportunitiesforworkingwithdataanddashboardsbyhavingaconversationwithit.Sally’sgoingtofocusonthreeofthesepotentialopportunities:
1.Productivity-CanGenerativeAIimprovetheproductivityofbothmyjuniorandseniorbusinessanalystswhenworkingwithaBItool?
2.Insights-Canmystakeholders“chatwiththeirdashboard”togetfastertimetoinsight?
3.Beautification–CanGenerativeAIhelpcreatebetterlookingbeautifuldashboardswithbest-practicesautomatically
builtin?
Let’sexplorethesethreeconcepts.
Productivity
Buildingdashboardsisnoeasytask.Therearemanyconsiderationsthatmustbeaccountedfor:
?Who’stheaudience?Anexecutive?Abusinessunit?Anotheranalyst?Yourself?
?Whatmetricsdotheycareabout?
?Doesthedatasupportthosemetrics?
?Howoftenwilltheybeviewingthedashboard?
?Whatfollow-upquestionsdoyouanticipatethemasking?
?Doyouneedtosplitthisintomultipledashboards?
Theanswerstothesequestionswillgreatlychangethedesignofthedashboard.Understandingtheoverallbusinessproblemandhowthedatacansupportthosemetricsis,firstandforemost,
whatmustbedone.Forabrand-newbusinessanalyst,thisis
tough.Thismaymeansendingoutalotofemailstryingtogetanunderstandingofwhatmetricspeoplecareabout,wherethatdatalives,andwhatdocumentationtoread.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA8
SallySue’sBIcopilotenableshertouploaddocumentationto
createagoverned,customcopilotcapableofansweringspecificquestionsmoreeffectively.Herorganization’sinternalwiki,whichhasimproveddocumentationpracticesovertime,servesasa
primaryresource.However,manyanswerstobusinessquestionsremainburiedindecade-oldemailsandtribalknowledge.
Duringhertestingphase,Sallytakesadvantageofthecontent
inthiswiki.Largelanguagemodelsexcelatparsingand
summarizingvastamountsoftext:themorequalityandaccuratedocumentationsheprovides,thebetterthecopilotwillperform.Sallypoursthroughthewiki,confirmsitsaccuracybycross-
checkingwithotherdepartments,scrapescurateddocumentation,carefullycleansit,andformatsitintoaJSONfilewithinformation
suchasthetitle,sectionname,andtext.ThisJSONisthen
uploadedintotheBItool’scopilotwherethesoftwarehandlestherest.
Customizingthecopilotwiththiscomprehensiveandaccurate
documentationenhancesitsabilitytoanswerbusinessquestions.Forexample,itcannowprovidedetailedexplanationsonlegacyprocessesthatareonlydocumentedinthewiki.Thisimprovementbooststheproductivityofjuniorandnewcolleagues,whousethecopilotforcreatingdashboardswithoutneedingtosiftthrough
extensivehistoricaldata.Notethatachievingthesebenefits
involvesongoingeffortstomaintainandupdatetheAImodeltoreflectcurrentbusinessneedsanddataqualitystandards.
Considerthisexample:
SallySuehasloadedinaknowledgebasethatdescribestheTTCKPI.Throughouttheoffice,everyonetalksaboutTTC–it’sthe
mostimportantmetricforpredictingprofitability.Butwhatdoes
TTCactuallymean?Intheknowledgebase,TTCisdefinedas“TotalTimetoCompletion.”Thelowerthisnumberis,thefasterbeer
canbottledanddistributed.ConsiderascenariowhereajuniorbusinessanalystistaskedwithcreatingadashboardaboutTTC.ThatjunioranalysthasthedatawhichholdsavariablecalledTTC.Theysimplyasktheircopilotthevaguequestion:
“Explaintomewhat’sinthedata.”Thecopilotthenreturns:
Yourdataappearstocontainanumberofbeerproductsproducedovertimeaswellasattributesaboutthoseproducts,suchas
weight,size,andcosttoproduce.TheTotalTimetoCompletion(TTC)isalsoincludedasoneoftheseattributesandisthe
business’smostimportantmetricbecauseitishighlynegatively
correlatedwithrevenue.ThelowerTTCis,themorerevenuetendstoincrease.Herearesomesuggestionsforvisualizingthedata:
Thekeythinghereisthatthecopilot:
?KnowswhatTTCisandcandecodewhattheacronymmeans
?KnowsthatTTCisimportantforrevenue
?Givesinitialvisualizationsuggestions
RatherthanrandomlyaddingvisualsintoaBItool,thecopilotis
givingtheuserastrongstartingpointandhelpsreducetheblankcanvaseffect.SallySueisalltoofamiliarwiththeblankcanvas
effect:it’sthefeelingyougetwhenyou’retaskedwithstartinga
brand-newpresentation,paper,ordashboard.You’represented
withablankcanvas,whichcanbeeitheragreatthingthatinspirescreativity,oraterrifyingthingthatsuccumbsyourbraintothe
dreadedwriter’sblock.AgoodBIcopilotcan,andshould,eliminatethiseffectandgivetheuseragoodstartingpoint.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA9
StartingfromscratchcanbeadifficulttaskforeventhemostseasonedBIveterans
Somequestionstheusermightaskare:
?“GivemesomesuggestedvisualizationsforTTC.”
?“BuildmeastarterdashboardforaCEOwhocaresaboutrevenueasitrelatestoTTC.Includeothermetricsthatmaybeusefultoknow.”
?“Modifymydashboardsothatit’smoreaboutTTCovertimeratherthanTTCasawhole.”
SallySuetriesallthesequestionsandevaluateshowtheBItool
does.Ifit’swell-tuned,itshouldgivestrongstartingvisualizationsandmetrics.Shefindsthatitdoesanokayjobcreatingastarterdashboard.It’snotperfectandsomeoftheKPIsseemabitoff,
butit’scertainlynotbad,either.Thecopilotcoulddowithalittleimprovementfromuserfeedbackandadditionaldocumentation,butshe’llgettothatlater.Thevisualizationsitbuildsinitscurrentstateareatleastgoodforeditingandspurringnewideas–exactlywhatitshouldbedoing.
ProgrammingforNon-Programmers
Most,ifnotall,BItoolshavesomesortofprogrammingor
scriptinglanguagebuiltintothemsothatuniquemetricscanbe
createdonthefly.Thisiscrucialforcreatinghighlycustomized
dashboardsandgeneratingtheneededmetricsdirectlyinthe
toolwithoutthetedioustaskofleavingit,usinganothertool
orlanguage,thenreloadingthedata.SallySueiswell-versedin
programming,butherbusinessusersarenot–infact,she’sluckyiftheyknowSQL.Timeandtimeagainshegetsquestionsfromherusersonhowtocreatesomeofthemostbasiccalculations:True/Falseflags,summationsovertime,summationsbygroups,nestedcalculationsandmore.Sallynoticedthathercopilotincludesa
placetodescribecalculationstogeneratethem.Intrigued,shetriedasimpleprompt:
“AverageTTCbyregion.”
ThecopilotreturnsafewoptionsofaverageTTCgroupedby
region,allvariableswithinthedata.Thecodeitreturnsiswell-
formatted,commented,andevenincludesafewexamplevaluesforverification.Sallyisextremelyhappytoseethis,asitgivesherbusinessusersasignificantlyeasierwaytocreatemetricsand
customcalculations.Shesuspectsthatthiswillgreatlyreducetheamountofquestionsthatshegetsandimprovethespeedand
accuracyofdashboardcreation.
Insights
Picturesareworthathousandwords,andadashboardismade
ofmanyinteractivepictures.Peoplelovedashboardsbecause,
whendoneright,theycanproduceawealthofinformationina
compactspace.Ifyou’reabusyexecutive,youmighthaveaccesstodozensofdashboards.Somedashboardsarelargerthanothers,andsomerequireyoutoclicktoaspecificlocationandhighlight
specificpartsofthedashboardtogettheinsightsyouneed.
Sometimesyoudon’thavethetimenorthepatiencetogothroughthatdashboardtogetwhatyouneed.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA10
Whatifyoucouldsimplyaskforit?
Whileplayingaroundwiththisnewtool,SallySuenoticedthat
hercopilotwasavailablenotjustfordashboardcreators,but
forreportviewersaswell.Shecouldaskquestionsaboutthe
dashboardtofigureoutwhatsheshouldreallyknowin30secondsfromthisseaofinformation.ShebuiltabasicTTCdashboardthatshewouldexpectexecutivestolookat.Itusedcommonmetrics
thatsheensuredwereapartofthedocumentationsheuploaded,andtherewasnocomplexmath.Sheincludedsomevisualslike
timeseriesgraphsofaverageTTCovertime,thecurrentaverageTTC,averageTTCfromthedayprior,andaverageTTCacross
variousregions.Sheaskedthecopilot:
“Givemethe3mostimportantthingsIshouldknowfromthisdashboard.”
Thecopilotreturned:
ThisdashboardappearstodisplaytheaverageTTCmetricovertimeandacrossregions.Thesearethemostimportantthingstoknowfromthisdashboard:
1.AverageTTCis3.5minutesandhasincreasedby30s(+20%)comparedtoyesterday.Thismayaffectrevenue.
2.AverageTTChasbeentrendingdownsinceJan2024,
buttherewasatemporaryspikeonMar23rdwhereTTCincreasedbynearly90s,butthenreturnedtonormalthefollowingday.
3.TheSoutheastregionhadthehighestincreaseinTTConMar23rd,contributingabout75%totheoverallriseinTTConthatday
SallySuethenasked,
“TellmethedriversofTTCfortheSoutheastregion.”Thecopilotreturned:
ThethreemostimportantdriversofTTCfortheSoutheastregionare:
?Bottlesavailable:thismetricappearstoberelatedtothe
numberofbottlesthatareavailableforproductiononadailybasis.Thisnumberrangesfrom0to10,000andispositivelyrelatedtoTTC.
?Totalworkers:thismetricindicatesthenumberofworkersonthewarehouseflooratthetimeandrangesfrom3to24.
?Unittemperature:thismetricindicatesthetemperatureofeachproductionunitandrangesfrom100Fto230F.Unitsover175Fareconsideredoverheating.
Sallywasimpressedwiththeperformanceofthecopilottograbinsightsfromthedashboard,showingthingsthatarebothdirectlyshownwithinthedashboardandthingsthatmaybehidden;
however,thisisjustfromherinitialtesting.Whileitcertainly
lookedconvincing,shestillneedstospendtimeverifyingtheaccuracyoftheseresultswhichsheplansondoinginafocusedtrustandsecuritytest.
Beautification
Sallyknowsalltoowellhoweasyitistodrag-and-droptobuild
dashboards.ModernBItoolsgenerallyhaveanoptimalsetof
colorsandsettingsturnedonforyoubydefault.Thesetendto
workwellandareusuallysetbyUXtoenablepeopletocreate
decent-lookingdashboardswithoutneedingtothinkasmuch
abouttherightcolorsorgraphsettings.WhatSallySuealsoknewishoweasyitistobuildbaddashboards.
Whatisabaddashboard?You’veprobablyencounteredone.Toomanymetrics.Numberseverywhere.Dozensofpages.Somanygraphscrammedintoasinglepagethanitbringsan8Kmonitortoitsknees.Colorsthatmakeyouwanttowatchblack-and-whitemoviesjusttorelaxyoureyeballs.You’vemostcertainlyseenabaddashboard.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA11
Whatisevenhappeninghere?
Nobodygoesoutoftheirwaytobuildabaddashboard–likethatever-growingjunkdrawerinyourkitchen,itjusthappensover
time.Onenewmetrichere.Onenewgraphthere.OnenewpagefortheaccountantoverinBusinessUnit274.Itgrowsandgrows.Themoreeyesareonadashboard,themorelikelyitistogetthisway.GenerativeAIhasthepotentialtocurbthis.
AnygoodcopilotinaBItoolwillhavebeentrainedon
dashboardingbestpractices.AsSallywenttobuilddashboards,shepaidspecialattentiontothegraphsitcreated:
?Didtheymakesense?
?Arethecolorsappropriate?
?Aretheretitleswheretheyshouldbe?
?Diditcreatetheoptimalnumberofpages?
?Diditfollowbestpracticesformetricsonasinglepage?
?Isitaccessible?
AgoodBIcopilotfollowsdashboardingbestpracticesandgivesastrongstartingpoint
Thankfully,hercopilotfollowedallthesebestpracticeswhen
buildingadashboard,andevenhadtheabilitytogivesuggestionsonhowtoimproveexistingdashboards.Itseemsthatthe
designersofthiscopilotthoughtwellaboutthis.
Challenges
Overall,SallywashappywiththeBIcopilot’scapabilities.Hertestsweresimple,butsheneededawideraudiencetoreallytestitout.Assherolledoutteststoherotherbusinessanalysts,shehad
threeissuesinmind:
?Howusefulisthis?
?Canitbetrusted?
?Isitsecure?
Usefulness
ABIcopilotisanoptionalfeature,firstandforemost.Itsgoalistoassistyoutoexploreyourdataandbuilddashboardsfaster.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA12
Sallyknewthat,likeanyotheroptionalfeature,itwillgocompletely
unusedifit’snotactuallyhelpful.Whensherolledoutthecopilottomorebusinessanalysts,sheaskedthemtopaycloseattentiontothefollowingquestion:doesthisfeaturemakebuilding
dashboardsfasterforyou,orisitafrustratinghindrance?
Ifyoufindyourselfgoingbacktothedrag-and-dropmethod,youprobablyfindthecopilottonotbeveryhelpful.Ifyouavoidthecopilotbecauseyoucan’ttrustitsanswers,thenit’snotagreat
copilot.Copilotsshouldbeconsistentintheiranswersandhavebestpracticesbuiltin.Ifit’screatinguselessdashboardsthat
aren’tevengoodforediting,thenthecopilothasfaileditsgoal.
Thecopilotshouldhelpreducetheblankcanvaseffect.Editingis,ingeneral,fasterthanstartingfromablankcanvas.Ifeditingis
harderthandragginganddropping,thenthecopilotisnotagoodfit.
Considercreatingasurveyorevenaworkshopforagroupof
users.Givethemsomesimpledatatoworkwithandaskthemtobuildadashboardoutofitusingthecopilotinalimitedamountoftime.Thedatashouldbeneutralandideallyhasnotbeen
seenbyanybody,butalsoeasytounderstand.Onegreatway
tofinddatalikethisistosearchforopendatasetsfrom
https://
.
Splitthegroupintotwo:onewhichhasaccesstothecopilot,andonewhichdoesn’t.Askthegroupwhodoeshavethecopilottouseittotheiradvantageto
createdashboardsoutofthedata.Aftertimeisup,allthepeopleintheworkshopshouldsendtheirdashboardstoyouforreview.Comparewhichoneswerebetter.Thisissubjective,soconsiderrecruitingotherstovote.
SendasurveyouttothegroupwhohadaccesstothegenerativeBIdashboard.Askthemquestionssuchas:
?Didyouusethenewcopilottobuildyourdashboard?
?Didyoufindithelpful?Ifso,howdidyouuseit?
?Didyougiveupusingitatanypoint?Ifso,why?
?Ifyoudidnotfindithelpful,whatdidyounotlikeaboutit?
?Ifyoudidnotuseit,whynot?
?Didyoutrusttheresultsthatitgaveyou?
?Wereanyresultsinaccurate?Ifso,whatwerethey?
?Wouldyouusethecopilotagaininthefuturetobuilddashboards?
?Onascaleof1to10,howdoyouratethecopilotoverall?
Performinganexerciselikethiscouldhelpidentifytheusefulnessofthecopilotandgiveyourselfsomeobjectivedatathathelpsyoudeterminewhetheryoushouldmoveforwardwithitsadoption.
Trust
Copi
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 80000-8:2007 RU Quantities and units - Part 8: Acoustics
- 【正版授權(quán)】 IEC 61000-3-2:2000+AMD1:2001+AMD2:2004 CSV EN-D Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions equipment input current <= 16
- 【正版授權(quán)】 IEC 62305-1:2006 EN-D Protection against lightning - Part 1: General principles
- 【正版授權(quán)】 IEC 60794-1-307:2025 EN-FR Optical fibre cables - Part 1-307: Generic specification - Basic optical cable test procedures - Cable element test methods - Tube kinking,method
- 【正版授權(quán)】 IEC 60896-22:2004 EN-D Stationary lead-acid batteries - Part 22: Valve regulated types - Requirements
- 【正版授權(quán)】 IEC 60073:2002 FR-D Basic and safety principles for man-machine interface,marking and identification - Coding principles for indicators and actuators
- 2025建筑工程施工承包合同書
- 2025合作合同范本項(xiàng)目合作合同書
- 結(jié)腸支架置入術(shù)的護(hù)理查房
- 醬酒知識(shí)培訓(xùn)課件教學(xué)
- 熱風(fēng)爐耐材砌筑施工方案
- (完整版)高中狀語(yǔ)從句練習(xí)題帶答案
- 人教版六年級(jí)道德與法治下冊(cè)課件 第二單元 愛(ài)護(hù)地球 共同責(zé)任 4 地球——我們的家園
- GIS導(dǎo)論筆記整理
- (完整word版)宿舍建筑平面圖
- 《理工英語(yǔ)1》課程導(dǎo)學(xué)PPT課件
- 電梯臺(tái)賬表格(精編版)
- 關(guān)于“最美鄉(xiāng)村教師”和“優(yōu)秀鄉(xiāng)村教師”結(jié)果的通報(bào)
- 禁止吸煙管理制度
- 鼻膽管護(hù)理 (2)ppt課件
- 田字格硬筆書法練字專用A4打印版紅藍(lán)兩色
評(píng)論
0/150
提交評(píng)論