版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶市重慶市第一中學2025屆高三最后一模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件2.函數在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.3.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.4.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.5.為了加強“精準扶貧”,實現偉大復興的“中國夢”,某大學派遣甲、乙、丙、丁、戊五位同學參加三個貧困縣的調研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.646.執(zhí)行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.7.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.8.已知函數,則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.9.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+110.下列函數中,圖象關于軸對稱的為()A. B.,C. D.11.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.12.已知函數的定義域為,則函數的定義域為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.14.西周初數學家商高在公元前1000年發(fā)現勾股定理的一個特例:勾三,股四,弦五.此發(fā)現早于畢達哥拉斯定理五百到六百年.我們把可以構成一個直角三角形三邊的一組正整數稱為勾股數.現從3,4,5,6,7,8,9,10,11,12,13這11個數中隨機抽取3個數,則這3個數能構成勾股數的概率為__________.15.在平面直角坐標系中,雙曲線的右準線與漸近線的交點在拋物線上,則實數的值為________.16.函數的圖像如圖所示,則該函數的最小正周期為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足(),數列的前項和,(),且,.(1)求數列的通項公式:(2)求數列的通項公式.(3)設,記是數列的前項和,求正整數,使得對于任意的均有.18.(12分)已知數列的前項和為,且滿足,各項均為正數的等比數列滿足(1)求數列的通項公式;(2)若,求數列的前項和19.(12分)已知函數.(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.20.(12分)設數列是公差不為零的等差數列,其前項和為,,若,,成等比數列.(1)求及;(2)設,設數列的前項和,證明:.21.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.22.(10分)已知都是各項不為零的數列,且滿足其中是數列的前項和,是公差為的等差數列.(1)若數列是常數列,,,求數列的通項公式;(2)若是不為零的常數),求證:數列是等差數列;(3)若(為常數,),.求證:對任意的恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據對數的運算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.2、B【解析】
根據特殊值及函數的單調性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調,故排除C;故選:B【點睛】本題考查根據函數圖象選擇函數解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.3、A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數基礎題.4、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.5、B【解析】
根據題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當按照進行分配時,則有種不同的方案;當按照進行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點睛】本題考查排列組合、數學文化,還考查數學建模能力以及分類討論思想,屬于中檔題.6、B【解析】
根據程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.7、C【解析】
作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準線:,作,;,設,故,,.故選:C【點睛】本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.8、D【解析】
先求函數在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數的函數的單調性及充分不必要條件,要注意二次函數零點的求法,屬于中檔題.9、B【解析】
以為圓心,以為半徑的圓的方程為,聯立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.10、D【解析】
圖象關于軸對稱的函數為偶函數,用偶函數的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數為偶函數;A中,,,故為奇函數;B中,的定義域為,不關于原點對稱,故為非奇非偶函數;C中,由正弦函數性質可知,為奇函數;D中,且,,故為偶函數.故選:D.【點睛】本題考查判斷函數奇偶性.判斷函數奇偶性的兩種方法:(1)定義法:對于函數的定義域內任意一個都有,則函數是奇函數;都有,則函數是偶函數(2)圖象法:函數是奇(偶)函數函數圖象關于原點(軸)對稱.11、B【解析】
根據角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.12、A【解析】試題分析:由題意,得,解得,故選A.考點:函數的定義域.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
雙曲線的焦點在軸上,漸近線為,結合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應形式是求解的關鍵,側重考查數學運算的核心素養(yǎng).14、【解析】
由組合數結合古典概型求解即可【詳解】從11個數中隨機抽取3個數有種不同的方法,其中能構成勾股數的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數學文化,考查組合問題,數據處理能力和應用意識.15、【解析】
求出雙曲線的右準線與漸近線的交點坐標,并將該交點代入拋物線的方程,即可求出實數的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準線方程為,漸近線方程為,所以,該雙曲線右準線與漸近線的交點為.由題意得,解得.故答案為:.【點睛】本題考查利用拋物線上的點求參數,涉及到雙曲線的準線與漸近線方程的應用,考查計算能力,屬于中等題.16、【解析】
根據圖象利用,先求出的值,結合求出,然后利用周期公式進行求解即可.【詳解】解:由,得,,,則,,,即,則函數的最小正周期,故答案為:8【點睛】本題主要考查三角函數周期的求解,結合圖象求出函數的解析式是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)().(2),.(3)【解析】
(1)依題意先求出,然后根據,求出的通項公式為,再檢驗的情況即可;(2)由遞推公式,得,結合數列性質可得數列相鄰項之間的關系,從而可求出結果;(3)通過(1)、(2)可得,所以,,,,.記,利用函數單調性可求的范圍,從而列不等式可解.【詳解】解:(1)因為數列滿足()①;②當時,.檢驗當時,成立.所以,數列的通項公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因為,所以,上式同除以,得,,即,所以,數列時首項為1,公差為1的等差數列,故,.(3)因為.所以,,,,.記,當時,.所以,當時,數列為單調遞減,當時,.從而,當時,.因此,.所以,對任意的,.綜上,.【點睛】本題考在數列通項公式的求法、等差數列的定義及通項公式、數列的單調性,考查考生的邏輯思維能力、運算求解能力以及化歸與轉化思想、分類討論思想.18、(1);(2)【解析】
(1)由化為,利用數列的通項公式和前n項和的關系,得到是首項為,公差為的等差數列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數列從開始成等差數列,,代入得是首項為,公差為的等差數列,,.(2)由(1)得,,,兩式相減得,,.【點睛】本題主要考查數列的通項公式和前n項和的關系和錯位相減法求和,還考查了運算求解的能力,屬于中檔題.19、(1)(2)【解析】
(1))當時,將函數寫成分段函數,即可求得不等式的解集.(2)根據原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即可.【詳解】解:(1)當時,由,得.故不等式的解集為.(2)因為“,”為假命題,所以“,”為真命題,所以.因為,所以,則,所以,即,解得,即的取值范圍為.【點睛】本題考查絕對值不等式的解法,以及絕對值三角不等式,屬于基礎題.20、(1),;(2)證明見解析.【解析】
(1)根據題中條件求出等差數列的首項和公差,然后根據首項和公差即可求出數列的通項和前項和;(2)根據裂項求和求出,根據的表達式即可證明.【詳解】(1)設的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數列基本量的求解,裂項求和法,屬于基礎題.21、(1)證明見解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內找一條直線垂直平面BDE即可;(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度貸款居間業(yè)務風險預警與處置合同
- 2025年度企業(yè)戰(zhàn)略規(guī)劃咨詢管理合同
- 農民法律基礎知識
- 中學生預防艾滋病宣傳
- 互聯網行業(yè)知識
- 問題回復函落款
- 2025勞動合同法與勞動關系
- 快消品行業(yè)業(yè)務員工作總結
- 2025鍋爐設備買賣安裝合同(初稿)
- 在線辦公環(huán)境下的學生自我控制能力挑戰(zhàn)與應對策略探討
- 春季餐飲營銷策劃
- 企業(yè)會計機構的職責(2篇)
- 《疥瘡的防治及治療》課件
- Unit4 What can you do Part B read and write (說課稿)-2024-2025學年人教PEP版英語五年級上冊
- 2025年MEMS傳感器行業(yè)深度分析報告
- 《線控底盤技術》2024年課程標準(含課程思政設計)
- 學校對口幫扶計劃
- 倉庫倉儲安全管理培訓課件模板
- 風力發(fā)電場運行維護手冊
- 河道旅游開發(fā)合同
- 情人合同范例
評論
0/150
提交評論