版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省安岳縣周禮中學2025屆高三3月份第一次模擬考試數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數z滿足(i為虛數單位),則z的虛部為()A. B. C.1 D.2.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.33.若與互為共軛復數,則()A.0 B.3 C.-1 D.44.元代數學家朱世杰的數學名著《算術啟蒙》是中國古代代數學的通論,其中關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.65.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直6.將函數的圖象沿軸向左平移個單位長度后,得到函數的圖象,則“”是“是偶函數”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.8.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數為()A. B. C. D.9.定義,已知函數,,則函數的最小值為()A. B. C. D.10.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.11.已知函數f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.12.如果,那么下列不等式成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數列{an}的前n項和為Sn,若a214.已知數列是各項均為正數的等比數列,若,則的最小值為________.15.雙曲線的焦距為__________,漸近線方程為________.16.某種產品的質量指標值服從正態(tài)分布,且.某用戶購買了件這種產品,則這件產品中質量指標值位于區(qū)間之外的產品件數為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,,若存在實數使成立,求實數的取值范圍.18.(12分)如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心都在坐標原點,且橢圓與的離心率均為.(Ⅰ)求橢圓與橢圓的標準方程;(Ⅱ)過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當的面積取最大值時,求兩直線MA,MB斜率的比值.19.(12分)如圖,在直三棱柱中,,,為的中點,點在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.20.(12分)已知橢圓的上頂點為,圓與軸的正半軸交于點,與有且僅有兩個交點且都在軸上,(為坐標原點).(1)求橢圓的方程;(2)已知點,不過點且斜率為的直線與橢圓交于兩點,證明:直線與直線的斜率互為相反數.21.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.22.(10分)在平面直角坐標系中,曲線,曲線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據復數z滿足,利用復數的除法求得,再根據復數的概念求解.【詳解】因為復數z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復數的概念及運算,還考查了運算求解的能力,屬于基礎題.2、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.3、C【解析】
計算,由共軛復數的概念解得即可.【詳解】,又由共軛復數概念得:,.故選:C【點睛】本題主要考查了復數的運算,共軛復數的概念.4、B【解析】分析:根據流程圖中的可知,每次循環(huán)的值應是一個等比數列,公比為;根據流程圖中的可知,每次循環(huán)的值應是一個等比數列,公比為,根據每次循環(huán)得到的的值的大小決定循環(huán)的次數即可.詳解:記執(zhí)行第次循環(huán)時,的值記為有,則有;記執(zhí)行第次循環(huán)時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環(huán)結構和數列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數列關系(比如相鄰項滿足等比數列、等差數列的定義,是否是求數列的前和、前項積等).5、D【解析】
根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.6、A【解析】
求出函數的解析式,由函數為偶函數得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數的圖象沿軸向左平移個單位長度,得到的圖象對應函數的解析式為,若函數為偶函數,則,解得,當時,.因此,“”是“是偶函數”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數解析式以及利用三角函數的奇偶性求參數,考查運算求解能力與推理能力,屬于中等題.7、C【解析】
根據表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.8、C【解析】
利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.9、A【解析】
根據分段函數的定義得,,則,再根據基本不等式構造出相應的所需的形式,可求得函數的最小值.【詳解】依題意得,,則,(當且僅當,即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數的最值,關鍵在于根據分段函數的定義得出,再由基本不等式求得最值,屬于中檔題.10、A【解析】
由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.11、A【解析】
先通過降冪公式和輔助角法將函數轉化為,再求最值.【詳解】已知函數f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數的逆用,還考查了運算求解的能力,屬于中檔題.12、D【解析】
利用函數的單調性、不等式的基本性質即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數的單調性比較大小,考查不等式的性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】試題分析:∵a2考點:等比數列性質及求和公式14、40【解析】
設等比數列的公比為,根據,可得,因為,根據均值不等式,即可求得答案.【詳解】設等比數列的公比為,,,等比數列的各項為正數,,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數列值的最值問題,解題關鍵是掌握等比數列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.15、6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.16、【解析】
直接計算,可得結果.【詳解】由題可知:則質量指標值位于區(qū)間之外的產品件數:故答案為:【點睛】本題考查正太分布中原則,審清題意,簡單計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】試題分析:先將問題“存在實數使成立”轉化為“求函數的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數的取值范圍是.考點:柯西不等式即運用和轉化與化歸的數學思想的運用.18、(1),(2)【解析】分析:(1)根據題的條件,得到對應的橢圓的上頂點,即可以求得橢圓中相應的參數,結合橢圓的離心率的大小,求得相應的參數,從而求得橢圓的方程;(2)設出一條直線的方程,與橢圓的方程聯立,消元,利用求根公式求得對應點的坐標,進一步求得向量的坐標,將S表示為關于k的函數關系,從眼角函數的角度去求最值,從而求得結果.詳解:(Ⅰ)依題意得對:,,得:;同理:.(Ⅱ)設直線的斜率分別為,則MA:,與橢圓方程聯立得:,得,得,,所以同理可得.所以,從而可以求得因為,所以,不妨設,所以當最大時,,此時兩直線MA,MB斜率的比值.點睛:該題考查的是有關橢圓與直線的綜合題,在解題的過程中,注意橢圓的對稱性,以及其特殊性,與y軸的交點即為橢圓的上頂點,結合橢圓焦點所在軸,得到相應的參數的值,再者就是應用離心率的大小找參數之間的關系,在研究直線與橢圓相交的問題時,首先設出直線的方程,與橢圓的方程聯立,求得結果,注意從函數的角度研究問題.19、見解析【解析】
(1)如圖,連接,交于點,連接,,則為的中點,因為為的中點,所以,又,所以,從而,,,四點共面.因為平面,平面,平面平面,所以.又,所以四邊形為平行四邊形,所以,所以(2)因為,為的中點,所以,又三棱柱是直三棱柱,,所以,,互相垂直,分別以,,的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,因為,,所以,,,,所以,,.設平面的法向量為,則,即,令,可得,,所以平面的一個法向量為.設平面的法向量為,則,即,令,可得,,所以平面的一個法向量為,所以,所以平面與平面所成二面角的正弦值為.20、(1)(2)證明見解析【解析】
(1)根據條件可得,進而得到,即可得到橢圓方程;(2)設直線的方程為,聯立,分別表示出直線和直線斜率,相加利用根與系數關系即可得到.【詳解】解:(1)圓與有且僅有兩個交點且都在軸上,所以,又,,解得,故橢圓的方程為;(2)設直線的方程為,聯立,整理可得,則,解得,設點,,則,,所以,故直線與直線的斜率互為相反數.【點睛】本題考查直線與橢圓的位置關系,涉及橢圓的幾何性質,關鍵是求出橢圓的標準方程,屬于中檔題.21、(1)見證明;(2)【解析】
(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度演出票務銷售代理服務合同3篇
- 2024年度新能源儲能支付擔保合同3篇
- 2024年度消防設施設計審查代理服務合同樣本2篇
- 2024年智能地磅采購合同樣本(含定制化軟件解決方案)3篇
- 2024年度綜合金融服務擔保借款合同制定指南3篇
- 2024全新外派勞務派遣與勞動保障合同3篇
- 2024年度煙囪工程廢棄物處理與資源化利用合同3篇
- 2024年度國際原油進口與運輸一體化服務合同3篇
- 2024展覽會場保安服務與展覽會期間食品安全監(jiān)督合同3篇
- 2024年大學生展望未來的計劃
- 信息學奧賽培訓課件 第4課 c++基礎語法for循環(huán)結構(第一課時)
- 劉燕園林花卉學2、3、4版課后答案
- 專升本英語寫作專題講解課件
- 干預策略患兒床頭抬高影響
- 電力增容改造技術標模板
- 血培養(yǎng)采集的方法及注意事項
- 梁靜茹《勇氣》的歌詞
- 國家開放大學02150-計算機網絡(本)期末復習題及參考答案
- 國開2023年春《理工英語3》機考網考期末復習資料參考答案
- 員工安全培訓教育制度
- 譯林版一年級英語上冊期末試卷
評論
0/150
提交評論