蘇州新區(qū)一中2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第1頁
蘇州新區(qū)一中2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第2頁
蘇州新區(qū)一中2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第3頁
蘇州新區(qū)一中2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第4頁
蘇州新區(qū)一中2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

蘇州新區(qū)一中2025屆高考考前提分數(shù)學(xué)仿真卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.2.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.3.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個內(nèi)角,則的大小關(guān)系是()A. B.C. D.以上情況均有可能4.如圖所示的程序框圖,當(dāng)其運行結(jié)果為31時,則圖中判斷框①處應(yīng)填入的是()A. B. C. D.5.定義運算,則函數(shù)的圖象是().A. B.C. D.6.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)7.的展開式中的系數(shù)為()A. B. C. D.8.已知數(shù)列中,,且當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,.則此數(shù)列的前項的和為()A. B. C. D.9.若,則下列不等式不能成立的是()A. B. C. D.10.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.11.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.4512.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.公比為正數(shù)的等比數(shù)列的前項和為,若,,則的值為__________.14.函數(shù)的定義域是__________.15.在平面直角坐標(biāo)系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.16.展開式中,含項的系數(shù)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知首項為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項和.18.(12分)設(shè)數(shù)列,其前項和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.19.(12分)已知函數(shù)(,)滿足下列3個條件中的2個條件:①函數(shù)的周期為;②是函數(shù)的對稱軸;③且在區(qū)間上單調(diào).(Ⅰ)請指出這二個條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.20.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.(1)求和的極坐標(biāo)方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.21.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.22.(10分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關(guān)于1,0中心對稱是解題的關(guān)鍵.2、C【解析】

畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【詳解】如圖;連接相關(guān)點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.3、B【解析】

由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較.【詳解】由可得,即函數(shù)的周期,因為在區(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調(diào)遞增,因為,是銳角三角形的兩個內(nèi)角,所以且即,所以即,.故選:.【點睛】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.4、C【解析】

根據(jù)程序框圖的運行,循環(huán)算出當(dāng)時,結(jié)束運行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運行結(jié)果為31,當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,.此時輸出.故選:C.【點睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.5、A【解析】

由已知新運算的意義就是取得中的最小值,因此函數(shù),只有選項中的圖象符合要求,故選A.6、C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.7、C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運算等有關(guān)方面的知識與技能,屬于中低檔題,也是??贾R點.在二項式定理的應(yīng)用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進行計算,從而問題可得解.8、A【解析】

根據(jù)分組求和法,利用等差數(shù)列的前項和公式求出前項的奇數(shù)項的和,利用等比數(shù)列的前項和公式求出前項的偶數(shù)項的和,進而可求解.【詳解】當(dāng)為奇數(shù)時,,則數(shù)列奇數(shù)項是以為首項,以為公差的等差數(shù)列,當(dāng)為偶數(shù)時,,則數(shù)列中每個偶數(shù)項加是以為首項,以為公比的等比數(shù)列.所以.故選:A【點睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項和公式、等比數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.9、B【解析】

根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.10、B【解析】

設(shè),則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.11、B【解析】

計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.12、C【解析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、56【解析】

根據(jù)已知條件求等比數(shù)列的首項和公比,再代入等比數(shù)列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式和前項和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.14、【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.15、【解析】

利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運算能力,屬于基礎(chǔ)題.16、2【解析】

變換得到,展開式的通項為,計算得到答案.【詳解】,的展開式的通項為:.含項的系數(shù)為:.故答案為:.【點睛】本題考查了二項式定理的應(yīng)用,意在考查學(xué)生的計算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)由原式可得,等式兩端同時除以,可得到,即可證明結(jié)論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數(shù)列是首項為1,公差為1的等差數(shù)列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差數(shù)列的證明,考查了等差數(shù)列及等比數(shù)列的前項和公式的應(yīng)用,考查了學(xué)生的計算求解能力,屬于中檔題.18、(1),;(2)詳見解析.【解析】

(1)當(dāng)時,,當(dāng)時,,當(dāng)時,也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)19、(Ⅰ)只有①②成立,;(Ⅱ).【解析】

(Ⅰ)依次討論①②成立,①③成立,②③成立,計算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數(shù)值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數(shù)的值域為.【點睛】本題考查了三角函數(shù)的周期,對稱軸,單調(diào)性,值域,表達式,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.20、(1);(2)【解析】

(1)直接利用轉(zhuǎn)換公式,把參數(shù)方程,直角坐標(biāo)方程與極坐標(biāo)方程進行轉(zhuǎn)化;(2)利用極坐標(biāo)方程將轉(zhuǎn)化為三角函數(shù)求解即可.【詳解】(1)因為,所以的普通方程為,又,,,的極坐標(biāo)方程為,的方程即為,對應(yīng)極坐標(biāo)方程為.(2)由己知設(shè),,則,,所以,又,,當(dāng),即時,取得最小值;當(dāng),即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標(biāo)方程,參數(shù)方程與極坐標(biāo)方程的互化,三角函數(shù)的值域求解等知識,考查了學(xué)生的運算求解能力.21、(1)見解析,(2)【解析】

(1)根據(jù)等差中項的定義得,然后構(gòu)造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結(jié)果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項為:,故.【點睛】考查等差中項的定義和分組求和的方法;中檔題.22、(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論