版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第9章中心對稱圖形——平行四邊形菱形的判定9.4.4B1234567答案呈現(xiàn)溫馨提示:點擊進入講評89如圖,在平行四邊形ABCD中,AB=4,BC=6,將線段AB水平向右平移a個單位長度得到線段EF,若四邊形ECDF為菱形,則a的值為(
)A.1B.2C.3D.41【點撥】易證得四邊形ECDF為平行四邊形,當CE=CD=4時,?ECDF為菱形,此時a=BE=BC-CE=6-4=2.【答案】B[2023·沈陽]如圖,在△ABC中,AB=AC,AD是BC邊上的中線,點E在DA的延長線上,連接BE,過點C作CF∥BE交AD的延長線于點F,連接BF,CE.求證:四邊形BECF是菱形.2【證明】∵AB=AC,AD是BC邊上的中線,∴AD垂直平分BC,∴EB=EC,F(xiàn)B=FC.∵CF∥BE,∴∠BED=∠CFD,∠EBD=∠FCD.∵DB=CD,∴△EBD≌△FCD(AAS),∴BE=FC,∴EB=BF=FC=EC,∴四邊形BECF是菱形.【點方法】判定菱形的方法1.若用對角線進行判定:先證明四邊形是平行四邊形,再證明對角線互相垂直,或直接證明四邊形的對角線互相垂直平分;2.若用邊進行判定:先證明四邊形是平行四邊形,再證明一組鄰邊相等,或直接證明四邊形的四條邊都相等.小惠自編一題:“如圖,在四邊形ABCD中,對角線AC,BD交于點O,AC⊥BD,OB=OD.求證:四邊形ABCD是菱形”,并將自己的證明過程與同學小潔交流.3若你贊成小惠的證法,請在第一個方框內(nèi)打“√”;若你贊成小潔的說法,請你補充一個條件,并證明.小惠:證明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD.∴四邊形ABCD是菱形.小潔:這個題目還缺少條件,需要補充一個條件才能證明.【解】我贊成小潔的說法,補充條件:OA=OC,證明如下:∵OA=OC,OB=OD,∴四邊形ABCD是平行四邊形.又∵AC⊥BD,∴平行四邊形ABCD是菱形.(補充的條件不唯一)[2023·懷化]如圖,矩形ABCD中,過對角線BD的中點O作BD的垂線EF,分別交AD,BC于點E,F(xiàn).4(1)求證:△BOF≌△DOE;【證明】∵四邊形ABCD是矩形,∴AD∥BC.∴∠EDO=∠FBO.∵點O是BD的中點,∴DO=BO.又∵∠EOD=∠FOB,∴△BOF≌△DOE(ASA).(2)連接BE,DF,求證:四邊形EBFD是菱形.【證明】由(1)得△BOF≌△DOE,∴BF=DE.∵四邊形ABCD是矩形,∴AD∥BC,即DE∥BF.∴四邊形EBFD是平行四邊形.∵EF⊥BD,∴四邊形EBFD是菱形.5[2023·齊齊哈爾]如圖,在四邊形ABCD中,AD=BC,AC⊥BD于點O.請?zhí)砑右粋€條件:_________________,使四邊形ABCD成為菱形.AD∥BC(答案不唯一)如圖,矩形ABCD的對角線AC,BD相交于點O,DE∥AC,CE∥BD.6(1)求證:四邊形OCED是菱形;(2)若BC=3,DC=2,求四邊形OCED的面積.[2022·北京]如圖,在?ABCD中,AC,BD交于點O,點E,F(xiàn)在AC上,AE=CF.7(1)求證:四邊形EBFD是平行四邊形;【證明】在?ABCD中,OA=OC,OB=OD.∵AE=CF.∴OE=OF,∴四邊形EBFD是平行四邊形.(2)若∠BAC=∠DAC,求證:平行四邊形EBFD是菱形.【證明】∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠BAC=∠DCA.∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC.∵OA=OC,∴DB⊥EF,∴平行四邊形EBFD是菱形.[2022·廣元]如圖,在四邊形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E為AB的中點,連接CE.8(1)求證:四邊形AECD為菱形;【證明】∵E為AB的中點,∴AB=2AE=2BE.∵AB=2CD,∴CD=AE.又∵AE∥CD,∴四邊形AECD是平行四邊形.∵AC平分∠DAB,∴∠DAC=∠EAC.∵AB∥CD,∴∠DCA=∠EAC.∴∠DCA=∠DAC.∴AD=CD.∴四邊形AECD是菱形.(2)若∠D=120°,DC=2,求△ABC的面積.【點方法】(1)由一組對邊平行且相等可證四邊形AECD是平行四邊形,由平行線的性質(zhì)和角平分線的定義可證AD=CD,可得結(jié)論.(2)由菱形的性質(zhì)可得AE=CD=CE=2,由等邊三角形的性質(zhì)和直角三角形的性質(zhì)等可求BC,AC的長,進而可求解.如圖,在?ABCD中,BC=2AB,AB⊥AC,分別在邊BC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024債務擔保服務合同標準文本3篇
- 2024年滬教版四年級語文下冊階段測試試卷
- 2024年魯人新版七年級數(shù)學上冊月考試卷
- 創(chuàng)新學生心理健康教育在科技教育中的應用
- 辦公環(huán)境下的家庭健康菜譜推廣策略
- 商務禮儀在家庭與社交中的藝術運用
- 中小學教育中數(shù)學與自然科學知識融合教學的案例分析
- 辦公心理學與家園共育的融合實踐
- 不同年齡段對教育信息接受度差異的深度研究
- 2025中國鐵路北京局集團限公司招聘189人(三)高頻重點提升(共500題)附帶答案詳解
- 智研咨詢發(fā)布-2024年中國牛油果行業(yè)現(xiàn)狀、發(fā)展環(huán)境及投資前景分析報告
- 杭州市西湖區(qū)2024年三年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析
- 眼視光學理論與方法智慧樹知到答案2024年溫州醫(yī)科大學
- 2022-2023學年廣東省廣州市花都區(qū)六年級(上)期末英語試卷(含答案)
- 公司合伙人合作協(xié)議書范本
- 2024年中考地理復習 人教版全四冊重點知識提綱
- 電梯季度維護保養(yǎng)項目表
- GB/T 44188-2024危險貨物爆炸品無約束包裝件試驗方法
- 機動車檢測站質(zhì)量手冊(根據(jù)補充技術要求修訂)
- 2024年(學習強國)思想政治理論知識考試題庫與答案
- 基于LoRa通信的智能家居系統(tǒng)設計及研究
評論
0/150
提交評論