




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河南省豫北重點(diǎn)中學(xué)高考數(shù)學(xué)必刷試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計(jì)值為A. B.C. D.2.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.3.已知,滿(mǎn)足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.4.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國(guó)古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.下圖是源于其思想的一個(gè)程序圖,若,,則輸出的()A.3 B.4 C.5 D.65.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.6.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.7.函數(shù)的值域?yàn)椋ǎ〢. B. C. D.8.為研究某咖啡店每日的熱咖啡銷(xiāo)售量和氣溫之間是否具有線(xiàn)性相關(guān)關(guān)系,統(tǒng)計(jì)該店2017年每周六的銷(xiāo)售量及當(dāng)天氣溫得到如圖所示的散點(diǎn)圖(軸表示氣溫,軸表示銷(xiāo)售量),由散點(diǎn)圖可知與的相關(guān)關(guān)系為()A.正相關(guān),相關(guān)系數(shù)的值為B.負(fù)相關(guān),相關(guān)系數(shù)的值為C.負(fù)相關(guān),相關(guān)系數(shù)的值為D.正相關(guān),相關(guān)負(fù)數(shù)的值為9.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.10.二項(xiàng)式的展開(kāi)式中,常數(shù)項(xiàng)為()A. B.80 C. D.16011.命題“”的否定是()A. B.C. D.12.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且橢圓與拋物線(xiàn)的兩個(gè)交點(diǎn)連線(xiàn)正好過(guò)點(diǎn),則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國(guó)西周時(shí)期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過(guò)“勾3股4弦5”的問(wèn)題.現(xiàn)有滿(mǎn)足“勾3股4弦5”,其中“股”,為“弦”上一點(diǎn)(不含端點(diǎn)),且滿(mǎn)足勾股定理,則______.14.已知實(shí)數(shù),滿(mǎn)足約束條件,則的最大值是__________.15.在平面直角坐標(biāo)系中,曲線(xiàn)上任意一點(diǎn)到直線(xiàn)的距離的最小值為_(kāi)_______.16.已知,,其中,為正的常數(shù),且,則的值為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.18.(12分)小麗在同一城市開(kāi)的2家店鋪各有2名員工.節(jié)假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無(wú)人休假,則調(diào)劑1人到該店維持營(yíng)業(yè),否則該店就停業(yè).(1)求發(fā)生調(diào)劑現(xiàn)象的概率;(2)設(shè)營(yíng)業(yè)店鋪數(shù)為X,求X的分布列和數(shù)學(xué)期望.19.(12分)近幾年一種新奇水果深受廣大消費(fèi)者的喜愛(ài),一位農(nóng)戶(hù)發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數(shù))進(jìn)行模擬.(Ⅰ)若該農(nóng)戶(hù)產(chǎn)出的該新奇水果的價(jià)格為150元/箱,試預(yù)測(cè)該新奇水果100箱的利潤(rùn)是多少元.|.(Ⅱ)據(jù)統(tǒng)計(jì),10月份的連續(xù)11天中該農(nóng)戶(hù)每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機(jī)抽取2天,估計(jì)恰有1天的水果箱數(shù)在內(nèi)的概率;(ⅱ)求這11天該農(nóng)戶(hù)每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點(diǎn)值作代表)參考數(shù)據(jù)與公式:設(shè),則0.541.81.530.45線(xiàn)性回歸直線(xiàn)中,,.20.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.21.(12分)(某工廠(chǎng)生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠(chǎng)帶來(lái)的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠(chǎng)帶來(lái)的效益的期望值判斷甲乙技術(shù)的好壞;(2)為鼓勵(lì)工人提高技術(shù),工廠(chǎng)進(jìn)行技術(shù)大賽,最后甲乙兩人進(jìn)入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級(jí)優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級(jí)一樣,則兩方都不得分,當(dāng)一方總分為4分時(shí),比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時(shí),最終甲獲勝的概率.①寫(xiě)出P0,P8的值;②求決賽甲獲勝的概率.22.(10分)如圖,在三棱柱中,是邊長(zhǎng)為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點(diǎn),是線(xiàn)段上的動(dòng)點(diǎn),若二面角的平面角的大小為,試確定點(diǎn)的位置.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計(jì)值為,故選C.2、A【解析】
分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生運(yùn)算能力,是一道容易題.3、D【解析】試題分析:先畫(huà)出可行域如圖:由,得,由,得,當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,最大值為3;當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點(diǎn):線(xiàn)性規(guī)劃.4、B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時(shí),的值記為有,則有;記執(zhí)行第次循環(huán)時(shí),的值記為有,則有.令,則有,故,故選B.點(diǎn)睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項(xiàng)的綜合,屬于中檔題,解題時(shí)注意流程圖中蘊(yùn)含的數(shù)列關(guān)系(比如相鄰項(xiàng)滿(mǎn)足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項(xiàng)積等).5、B【解析】
依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱(chēng),a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱(chēng),定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).6、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對(duì)稱(chēng)軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對(duì)稱(chēng)軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.7、A【解析】
由計(jì)算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域?yàn)?故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對(duì)象角的取值范圍,考查計(jì)算能力,屬于基礎(chǔ)題.8、C【解析】
根據(jù)正負(fù)相關(guān)的概念判斷.【詳解】由散點(diǎn)圖知隨著的增大而減小,因此是負(fù)相關(guān).相關(guān)系數(shù)為負(fù).故選:C.【點(diǎn)睛】本題考查變量的相關(guān)關(guān)系,考查正相關(guān)和負(fù)相關(guān)的區(qū)別.掌握正負(fù)相關(guān)的定義是解題基礎(chǔ).9、A【解析】
由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.10、A【解析】
求出二項(xiàng)式的展開(kāi)式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開(kāi)式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.【點(diǎn)睛】本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開(kāi)式的通式,是基礎(chǔ)題.11、D【解析】
根據(jù)全稱(chēng)命題的否定是特稱(chēng)命題,對(duì)命題進(jìn)行改寫(xiě)即可.【詳解】全稱(chēng)命題的否定是特稱(chēng)命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱(chēng)命題的否定,難度容易.12、B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、拋物線(xiàn)的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點(diǎn)睛】本題考查向量的數(shù)量積,重點(diǎn)考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.14、【解析】
令,所求問(wèn)題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線(xiàn)經(jīng)過(guò)時(shí),最大,且,故的最大值為.故答案為:.【點(diǎn)睛】本題考查線(xiàn)性規(guī)劃中非線(xiàn)性目標(biāo)函數(shù)的最值問(wèn)題,要做好此類(lèi)題,前提是正確畫(huà)出可行域,本題是一道基礎(chǔ)題.15、【解析】
解法一:曲線(xiàn)上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線(xiàn)的距離的最小值;解法二:曲線(xiàn)函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線(xiàn)的距離即可所求答案.【詳解】解法一(基本不等式):在曲線(xiàn)上任取一點(diǎn),該點(diǎn)到直線(xiàn)的距離為,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,曲線(xiàn)上任意一點(diǎn)到直線(xiàn)距離的最小值為;解法二(導(dǎo)數(shù)法):曲線(xiàn)的函數(shù)解析式為,則,設(shè)過(guò)曲線(xiàn)上任意一點(diǎn)的切線(xiàn)與直線(xiàn)平行,則,解得,當(dāng)時(shí),到直線(xiàn)的距離;當(dāng)時(shí),到直線(xiàn)的距離.所以曲線(xiàn)上任意一點(diǎn)到直線(xiàn)的距離的最小值為.故答案為:.【點(diǎn)睛】本題考查曲線(xiàn)上一點(diǎn)到直線(xiàn)距離最小值的計(jì)算,可轉(zhuǎn)化為利用切線(xiàn)與直線(xiàn)平行來(lái)找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線(xiàn)的距離,也可以設(shè)曲線(xiàn)上的動(dòng)點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.16、【解析】
把已知等式變形,展開(kāi)兩角和與差的三角函數(shù),結(jié)合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【點(diǎn)睛】本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解析】試題分析:用零點(diǎn)分區(qū)間討論法解含絕對(duì)值的不等式,根據(jù)絕對(duì)值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設(shè)知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數(shù)f(x)的定義域?yàn)椋ī仭蓿?)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時(shí),恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范圍是(﹣∞,﹣1].18、(1)(2)見(jiàn)解析,【解析】
(1)根據(jù)題意設(shè)出事件,列出概率,運(yùn)用公式求解;(2)由題得,X的所有可能取值為,根據(jù)(1)和變量對(duì)應(yīng)的事件,可得變量對(duì)應(yīng)的概率,即可得分布列和期望值.【詳解】(1)記2家小店分別為A,B,A店有i人休假記為事件(,1,2),B店有i人,休假記為事件(,1,2),發(fā)生調(diào)劑現(xiàn)象的概率為P.則,,.所以.答:發(fā)生調(diào)劑現(xiàn)象的概率為.(2)依題意,X的所有可能取值為0,1,2.則,,.所以X的分布表為:X012P所以.【點(diǎn)睛】本題是一道考查概率和期望的常考題型.19、(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【解析】
(Ⅰ)根據(jù)參考數(shù)據(jù)得到和,代入得到回歸直線(xiàn)方程,,再代入求成本,最后代入利潤(rùn)公式;(Ⅱ)(?。┦紫确謩e計(jì)算水果箱數(shù)在和內(nèi)的天數(shù),再用編號(hào)列舉基本事件的方法求概率;(ⅱ)根據(jù)頻率分布直方圖直接計(jì)算結(jié)果.【詳解】(Ⅰ)根據(jù)題意,,所以,所以.又,所以.所以時(shí),(千元),即該新奇水果100箱的成本為8314元,故該新奇水果100箱的利潤(rùn).(Ⅱ)(i)根據(jù)頻率分布直方圖,可知水果箱數(shù)在內(nèi)的天數(shù)為設(shè)這兩天分別為a,b,水果箱數(shù)在內(nèi)的天數(shù)為,設(shè)這四天分別為A,B,C,D,所以隨機(jī)抽取2天的基本結(jié)果為,,,,,,,,,,,,,,,共15種.滿(mǎn)足恰有1天的水果箱數(shù)在內(nèi)的結(jié)果為,,,,,,,,共8種,所以估計(jì)恰有1天的水果箱數(shù)在內(nèi)的概率為.(ⅱ)這11天該農(nóng)戶(hù)每天為甲地配送的該新奇水果的箱數(shù)的平均值為(箱).【點(diǎn)睛】本題考查考查回歸直線(xiàn)方程,統(tǒng)計(jì),概率,均值的綜合問(wèn)題,意在考查分析數(shù)據(jù),應(yīng)用數(shù)據(jù),解決問(wèn)題的能力,屬于中檔題型.20、(1)(2)【解析】
(1)由正弦定理邊化角化簡(jiǎn)已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當(dāng)且僅當(dāng)時(shí)取等,.所以的面積的最大值為.【點(diǎn)睛】本題考查了正余弦定理在解三角形中的應(yīng)用,考查了三角形面積的最值問(wèn)題,難度較易.21、(1)乙的技術(shù)更好,見(jiàn)解析(2)①,;②【解析】
(1)列出分布列,求出期望,比較大小即可;(2)①直接根據(jù)概率的意義可得P0,P8;②設(shè)每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數(shù)列,根據(jù)可得答案.【詳解】(1)記甲乙各生產(chǎn)一件零件給工廠(chǎng)帶來(lái)的效益分別為元、元,隨機(jī)變量,的分布列分別為10521052所以,,所以,即乙的技術(shù)更好(2)①表示的是甲得分時(shí),甲最
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 黃岡市 2025年春季九年級(jí)調(diào)研考試物理試題
- 建筑工程擴(kuò)某勞務(wù)分包合同(知識(shí)研究版本)
- 山東省棗莊市薛城區(qū)2024-2025學(xué)年四下數(shù)學(xué)期末考試試題含解析
- 江西省南昌市新建縣第一中學(xué)2025屆高三高考仿真模擬卷語(yǔ)文試題含解析
- 天津商業(yè)大學(xué)寶德學(xué)院《納米材料基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南檢察職業(yè)學(xué)院《界面與交互設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆鐵道職業(yè)技術(shù)學(xué)院《教育觀察反思》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西制造職業(yè)技術(shù)學(xué)院《園藝植物生物技術(shù)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧夏工商職業(yè)技術(shù)學(xué)院《中學(xué)音樂(lè)教學(xué)法(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 井岡山大學(xué)《中醫(yī)經(jīng)典導(dǎo)讀》2023-2024學(xué)年第二學(xué)期期末試卷
- 長(zhǎng)距離供熱管道工程設(shè)計(jì)方案
- 形勢(shì)與政策(沈陽(yáng)職業(yè)技術(shù)學(xué)院)知到智慧樹(shù)答案
- 2024年中國(guó)丙烯酰胺市場(chǎng)調(diào)查研究報(bào)告
- 《腸道功能訓(xùn)練》課件
- GB/T 11981-2024建筑用輕鋼龍骨
- 2024年SEM入門(mén)培訓(xùn)教程-走向網(wǎng)絡(luò)營(yíng)銷(xiāo)巔峰
- 《荷塘月色》課件25張-
- 機(jī)械設(shè)備及配件供應(yīng)及售后服務(wù)方案
- 四年級(jí)數(shù)學(xué)上冊(cè) 第4章《運(yùn)算律》單元測(cè)評(píng)必刷卷 帶解析(北師大版)
- 幼兒園童話(huà)故事《海的女兒》
- 工業(yè)機(jī)器人論文3000字(合集4篇)
評(píng)論
0/150
提交評(píng)論