版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
西藏林芝二高2025屆高三一診考試數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則A. B.C. D.2.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.3.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.4.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標原點,拋物線的準線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準線上的射影為,則三點在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.45.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.6.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.7.正項等比數(shù)列中的、是函數(shù)的極值點,則()A. B.1 C. D.28.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.9.若函數(shù)的圖象經(jīng)過點,則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.10.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.11.如圖,設(shè)為內(nèi)一點,且,則與的面積之比為A. B.C. D.12.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,圓.已知過原點且相互垂直的兩條直線和,其中與圓相交于,兩點,與圓相切于點.若,則直線的斜率為_____________.14.已知數(shù)列的各項均為正數(shù),記為的前n項和,若,,則________.15.若函數(shù)滿足:①是偶函數(shù);②的圖象關(guān)于點對稱.則同時滿足①②的,的一組值可以分別是__________.16.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點為,過上一點()作兩條傾斜角互補的直線分別與交于,兩點,(1)證明:直線的斜率是-1;(2)若,,成等比數(shù)列,求直線的方程.18.(12分)在直角坐標系中,曲線的參數(shù)方程是(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線的極坐標方程;(2)在曲線上取一點,直線繞原點逆時針旋轉(zhuǎn),交曲線于點,求的最大值.19.(12分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.20.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù).21.(12分)已知數(shù)列的前項和和通項滿足.(1)求數(shù)列的通項公式;(2)已知數(shù)列中,,,求數(shù)列的前項和.22.(10分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
因為,,所以,,故選D.2、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.3、D【解析】
三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應(yīng)用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.4、C【解析】
①:由拋物線的定義可知,從而可求的坐標;②:做關(guān)于準線的對稱點為,通過分析可知當三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達定理,可知焦點坐標的關(guān)系,進而可求,從而可判斷出的關(guān)系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設(shè),則關(guān)于準線的對稱點為,故,當且僅當三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點坐標為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.【點睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結(jié)合初中的“飲馬問題”分析出何時取最小值.5、B【解析】
分別求得所有基本事件個數(shù)和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關(guān)鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).6、C【解析】
由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,,即,解得;因為所以,當時,.故選:C.【點睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應(yīng)用,難度一般.7、B【解析】
根據(jù)可導(dǎo)函數(shù)在極值點處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點,也就是的兩個根∴又是正項等比數(shù)列,所以∴.故選:B【點睛】本題主要考查了等比數(shù)列下標和性質(zhì)以應(yīng)用,屬于中檔題.8、D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標運算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.9、B【解析】
由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.10、A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題11、A【解析】
作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎(chǔ)題,作出合適的輔助線是本題的關(guān)鍵.12、D【解析】
運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當時,的最小值,故選D.【點睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè):,:,利用點到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點睛】本題主要考查點到直線的距離公式的運用,并結(jié)合圓的方程,垂徑定理的基本知識,屬于中檔題.14、127【解析】
已知條件化簡可化為,等式兩邊同時除以,則有,通過求解方程可解得,即證得數(shù)列為等比數(shù)列,根據(jù)已知即可解得所求.【詳解】由..故答案為:.【點睛】本題考查通過遞推公式證明數(shù)列為等比數(shù)列,考查了等比的求和公式,考查學生分析問題的能力,難度較易.15、,【解析】
根據(jù)是偶函數(shù)和的圖象關(guān)于點對稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.16、【解析】
建系,設(shè)設(shè),由可得,進一步得到的坐標,再利用數(shù)量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數(shù)量積,考查學生的運算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)設(shè),,由已知,得,代入中即可;(2)利用拋物線的定義將轉(zhuǎn)化為,再利用韋達定理計算.【詳解】(1)在拋物線上,∴,設(shè),,由題可知,,∴,∴,∴,∴,∴(2)由(1)問可設(shè)::,則,,,∴,∴,即(*),將直線與拋物線聯(lián)立,可得:,所以,代入(*)式,可得滿足,∴:.【點睛】本題考查直線與拋物線的位置關(guān)系的應(yīng)用,在處理直線與拋物線位置關(guān)系的問題時,通常要涉及韋達定理來求解,本題查學生的運算求解能力,是一道中檔題.18、(1)(2)最大值為【解析】
(1)利用消去參數(shù),求得曲線的普通方程,再轉(zhuǎn)化為極坐標方程.(2)設(shè)出兩點的坐標,求得的表達式,并利用三角恒等變換進行化簡,再結(jié)合三角函數(shù)最值的求法,求得的最大值.【詳解】(1)由消去得曲線的普通方程為.所以的極坐標方程為,即.(2)不妨設(shè),,,,,則當時,取得最大值,最大值為.【點睛】本小題主要考查參數(shù)方程化為普通方程,普通方程化為極坐標方程,考查極坐標系下線段長度的乘積的最值的求法,考查三角恒等變換,考查三角函數(shù)最值的求法,屬于中檔題.19、(1)(2)定值為0.【解析】
(1)根據(jù)直線方程求焦點坐標,即得c,再根據(jù)離心率得,(2)先設(shè)直線方程以及各點坐標,化簡,再聯(lián)立直線方程與橢圓方程,利用韋達定理代入化簡得結(jié)果.【詳解】(1)因為直線過橢圓的右焦點,所以,因為離心率為,所以,(2),設(shè)直線,則因此由得,所以,因此即【點睛】本題考查橢圓方程以及直線與橢圓位置關(guān)系,考查綜合分析求解能力,屬中檔題.20、(1);(2)極小值;(3)函數(shù)的零點個數(shù)為.【解析】
(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進而可得出該函數(shù)的極小值;(3)由當時,以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以.所以,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年(全新版)中國汽車冷沖壓模具行業(yè)發(fā)展狀況及營銷戰(zhàn)略研究報告
- 2025-2030年中國雞骨素產(chǎn)業(yè)運行趨勢及投資戰(zhàn)略研究報告
- 2025-2030年中國食品安全快速檢測行業(yè)運行動態(tài)及前景趨勢預(yù)測報告
- 2025-2030年中國門禁系統(tǒng)行業(yè)發(fā)展現(xiàn)狀及前景規(guī)劃研究報告
- 2025-2030年中國連續(xù)熱鍍鋁硅合金鋼板市場競爭格局與前景發(fā)展策略分析報告
- 2025-2030年中國軟件測試行業(yè)運營狀況及投資前景預(yù)測報告
- 制刷行業(yè)法律法規(guī)與標準制定探討分析考核試卷
- 兒童益智音像制品的設(shè)計與創(chuàng)新考核試卷
- 寵物收養(yǎng)家庭寵物醫(yī)療保健考核試卷
- 信息技術(shù)項目管理課件考核試卷
- 2023中華護理學會團體標準-注射相關(guān)感染預(yù)防與控制
- 各級各類護理人員崗位職責
- 狂犬病與破傷風的同意告知書
- FZ/T 81013-2016寵物狗服裝
- PPVT幼兒語言能力測試題附答案
- JB∕T 14089-2020 袋式除塵器 濾袋運行維護技術(shù)規(guī)范
- 陜西省寶雞市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細及行政區(qū)劃代碼
- 中華人民共和國職業(yè)分類大典電子版
- 畢業(yè)設(shè)計小型液壓機主機結(jié)構(gòu)設(shè)計與計算
- 19XR開機運行維護說明書
- 全國非煤礦山分布
評論
0/150
提交評論