西北工業(yè)大學(xué)《品牌整體形象設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
西北工業(yè)大學(xué)《品牌整體形象設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
西北工業(yè)大學(xué)《品牌整體形象設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
西北工業(yè)大學(xué)《品牌整體形象設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
西北工業(yè)大學(xué)《品牌整體形象設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁西北工業(yè)大學(xué)《品牌整體形象設(shè)計》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在智能交通系統(tǒng)中的應(yīng)用可以優(yōu)化交通流量和提高安全性。假設(shè)要通過計算機視覺監(jiān)測道路上的車輛擁堵情況。以下關(guān)于計算機視覺在智能交通中的描述,哪一項是錯誤的?()A.可以通過車輛檢測和計數(shù)來評估道路的擁堵程度B.能夠識別車輛的類型和行駛方向,為交通管理提供數(shù)據(jù)支持C.計算機視覺在智能交通中的應(yīng)用完全不受惡劣天氣和光照條件的影響D.可以與交通信號控制系統(tǒng)聯(lián)動,實現(xiàn)自適應(yīng)的交通信號配時2、計算機視覺中的動作識別旨在識別視頻中的人體動作。假設(shè)要對一段監(jiān)控視頻中的人員動作進(jìn)行分類,以下關(guān)于動作識別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復(fù)雜的動作變化,準(zhǔn)確率高B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)在動作識別中無法捕捉動作的時空特征C.3D卷積神經(jīng)網(wǎng)絡(luò)能夠同時處理空間和時間維度的信息,適用于動作識別任務(wù)D.動作識別系統(tǒng)對視頻的拍攝角度和背景變化不敏感,具有很強的通用性3、在計算機視覺的圖像特征提取中,假設(shè)要提取對光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復(fù)雜度高,實時性差B.HOG特征對光照變化適應(yīng)性強,但對旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達(dá)能力有限D(zhuǎn).沒有一種特征提取方法能夠同時滿足對光照、旋轉(zhuǎn)和縮放的不變性要求4、計算機視覺在醫(yī)學(xué)圖像分析中有著重要作用。假設(shè)要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓(xùn)練中數(shù)據(jù)標(biāo)注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標(biāo)注B.眼底圖像的質(zhì)量參差不齊,影響標(biāo)注準(zhǔn)確性C.標(biāo)注人員的醫(yī)學(xué)知識不足,導(dǎo)致標(biāo)注錯誤D.數(shù)據(jù)量過大,標(biāo)注工作耗時費力5、在計算機視覺的醫(yī)學(xué)圖像分析中,輔助醫(yī)生進(jìn)行疾病診斷。假設(shè)要通過分析CT圖像檢測腫瘤的位置和大小,以下關(guān)于醫(yī)學(xué)圖像計算機視覺應(yīng)用的描述,正確的是:()A.計算機視覺算法可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進(jìn)一步判斷B.不同患者的個體差異和掃描參數(shù)的變化對腫瘤檢測結(jié)果沒有影響C.結(jié)合醫(yī)生的先驗知識和計算機視覺技術(shù)能夠提高腫瘤檢測的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像中的噪聲和偽影對計算機視覺算法的性能沒有影響6、在一個基于計算機視覺的無人駕駛系統(tǒng)中,需要對道路場景進(jìn)行理解和預(yù)測,例如判斷前方是否有行人橫穿馬路。為了實現(xiàn)準(zhǔn)確的場景理解和預(yù)測,以下哪種技術(shù)可能是關(guān)鍵?()A.語義分割B.實例分割C.場景圖生成D.以上都是7、在計算機視覺的目標(biāo)跟蹤任務(wù)中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個特定的目標(biāo)。假設(shè)要跟蹤一個在運動場上快速移動且形狀變化的運動員,同時存在其他相似物體的干擾。以下哪種目標(biāo)跟蹤算法在這種具有挑戰(zhàn)性的場景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C.基于深度學(xué)習(xí)的跟蹤D.基于均值漂移的跟蹤8、在計算機視覺的圖像修復(fù)任務(wù)中,假設(shè)圖像中有大面積的損壞或缺失區(qū)域,以下哪種方法可能更依賴于對圖像全局結(jié)構(gòu)的理解?()A.基于紋理合成的方法B.基于擴散的方法C.基于深度學(xué)習(xí)的方法D.基于樣例的方法9、在計算機視覺的圖像修復(fù)任務(wù)中,恢復(fù)圖像中缺失或損壞的部分。假設(shè)要修復(fù)一張老照片中缺失的部分,以下關(guān)于圖像修復(fù)方法的描述,正確的是:()A.基于紋理合成的圖像修復(fù)方法能夠完美恢復(fù)復(fù)雜的結(jié)構(gòu)和細(xì)節(jié)B.深度學(xué)習(xí)中的自編碼器在圖像修復(fù)中無法學(xué)習(xí)到有效的特征表示C.圖像修復(fù)的結(jié)果不受缺失區(qū)域的大小和形狀的影響D.結(jié)合先驗知識和上下文信息的深度學(xué)習(xí)方法可以產(chǎn)生更合理和自然的修復(fù)效果10、計算機視覺中的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在跟蹤過程中發(fā)生了嚴(yán)重的形變。以下關(guān)于處理目標(biāo)形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應(yīng)地處理目標(biāo)形變,保持跟蹤的準(zhǔn)確性B.特征點跟蹤方法對目標(biāo)形變不敏感,在這種情況下仍然能夠可靠跟蹤C.深度學(xué)習(xí)中的孿生網(wǎng)絡(luò)在目標(biāo)形變時容易丟失目標(biāo),無法繼續(xù)跟蹤D.結(jié)合多種特征和模型更新策略可以提高對目標(biāo)形變的跟蹤魯棒性11、計算機視覺中的圖像語義分割需要為圖像中的每個像素分配類別標(biāo)簽。假設(shè)要對一張城市街景圖像進(jìn)行語義分割,包括道路、建筑物、車輛和行人等。以下哪種圖像語義分割方法在處理這種復(fù)雜場景時能夠提供更精細(xì)的分割結(jié)果?()A.全卷積網(wǎng)絡(luò)(FCN)B.U-NetC.SegNetD.DeepLab12、在計算機視覺的發(fā)展中,模型的可解釋性是一個重要的研究方向。以下關(guān)于模型可解釋性的描述,不準(zhǔn)確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對于建立用戶對模型的信任和確保模型的公正性具有重要意義C.一些可視化技術(shù),如特征圖可視化和類激活映射,可以幫助解釋模型的決策過程D.目前的計算機視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)13、在計算機視覺的圖像風(fēng)格遷移任務(wù)中,將一張圖像的風(fēng)格應(yīng)用到另一張圖像上。假設(shè)要將一幅油畫的風(fēng)格遷移到一張照片上,以下關(guān)于圖像風(fēng)格遷移方法的描述,正確的是:()A.基于手工特征提取和風(fēng)格轉(zhuǎn)換的方法能夠?qū)崿F(xiàn)自然逼真的風(fēng)格遷移B.深度學(xué)習(xí)中的生成對抗網(wǎng)絡(luò)(GAN)在風(fēng)格遷移中無法生成多樣化的風(fēng)格效果C.圖像的內(nèi)容和風(fēng)格可以完全獨立地進(jìn)行處理,互不影響D.考慮圖像的局部和全局特征以及語義信息能夠提升風(fēng)格遷移的質(zhì)量14、計算機視覺中的光流計算用于估計圖像中像素的運動。假設(shè)要對一個快速運動的物體進(jìn)行光流估計,同時場景中存在光照變化和噪聲干擾。在這種情況下,以下哪種光流計算方法能夠提供更準(zhǔn)確和穩(wěn)定的結(jié)果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法15、在計算機視覺的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準(zhǔn)確地劃分出來。假設(shè)要對一張包含多個水果的圖像進(jìn)行精確分割,每個水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測的分割D.基于深度學(xué)習(xí)的語義分割二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述圖像的色彩抖動技術(shù)。2、(本題5分)說明計算機視覺在隧道安全檢測中的方法。3、(本題5分)解釋計算機視覺在慈善捐贈中的物品分類和評估。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)基于計算機視覺的智能倉儲管理系統(tǒng),實現(xiàn)貨物的自動識別和定位。2、(本題5分)使用目標(biāo)跟蹤算法,跟蹤舞蹈表演中舞者的姿態(tài)變化。3、(本題5分)利用圖像識別技術(shù),對不同種類的寵物圖像進(jìn)行分類和識別。4、(本題5分)運用圖像識別算法,對不同類型的自行車圖像進(jìn)行分類和識別。5、(本題5分)開發(fā)一個能夠識別不同國家國旗的應(yīng)用。四、分析題(本大題共3個小題,共30分)1、(本題10分)觀察某高端護(hù)膚品品牌的柜臺展示設(shè)計,分析其如何通過燈

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論