西藏大學(xué)《大數(shù)據(jù)開發(fā)綜合實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
西藏大學(xué)《大數(shù)據(jù)開發(fā)綜合實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
西藏大學(xué)《大數(shù)據(jù)開發(fā)綜合實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
西藏大學(xué)《大數(shù)據(jù)開發(fā)綜合實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
西藏大學(xué)《大數(shù)據(jù)開發(fā)綜合實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共6頁西藏大學(xué)

《大數(shù)據(jù)開發(fā)綜合實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、數(shù)據(jù)分析中的數(shù)據(jù)可視化不僅要美觀,還要具有交互性。假設(shè)要構(gòu)建一個交互式的數(shù)據(jù)可視化報表,允許用戶根據(jù)自己的需求篩選和查看數(shù)據(jù),以下哪種工具可能是最合適的?()A.ExcelB.TableauC.PowerBID.matplotlib2、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫是一種重要的存儲和管理數(shù)據(jù)的方式。以下關(guān)于數(shù)據(jù)倉庫的描述中,錯誤的是?()A.數(shù)據(jù)倉庫可以將來自不同數(shù)據(jù)源的數(shù)據(jù)整合在一起B(yǎng).數(shù)據(jù)倉庫可以提供高效的數(shù)據(jù)查詢和分析功能C.數(shù)據(jù)倉庫中的數(shù)據(jù)是實時更新的,反映了最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉庫的建設(shè)需要投入大量的時間和資源3、在數(shù)據(jù)分析的異常檢測中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計的方法,設(shè)定閾值判斷異常B.基于距離的方法,計算數(shù)據(jù)點之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測,認(rèn)為所有交易都是正常的4、在進(jìn)行數(shù)據(jù)清洗時,發(fā)現(xiàn)數(shù)據(jù)存在重復(fù)記錄。以下哪種方法可以有效地去除重復(fù)記錄?()A.手動篩選B.使用數(shù)據(jù)庫的去重功能C.隨機(jī)刪除一部分重復(fù)記錄D.對重復(fù)記錄進(jìn)行合并5、假設(shè)我們要分析某地區(qū)不同年齡段人口的收入水平,以下哪種數(shù)據(jù)分析方法可以直觀地展示收入隨年齡的變化趨勢?()A.分組柱狀圖B.折線圖C.箱線圖D.直方圖6、在數(shù)據(jù)分析中,若要評估一個預(yù)測模型的準(zhǔn)確性,以下哪個指標(biāo)是常用的?()A.均方誤差B.標(biāo)準(zhǔn)差C.偏度D.峰度7、在進(jìn)行數(shù)據(jù)分析時,需要對數(shù)據(jù)進(jìn)行預(yù)處理以提高分析的準(zhǔn)確性和效率。假設(shè)要處理一個包含大量文本數(shù)據(jù)的數(shù)據(jù)集,需要將文本轉(zhuǎn)換為可分析的數(shù)值形式。以下哪種文本預(yù)處理方法在這種情況下最為常用和有效?()A.詞袋模型B.TF-IDF加權(quán)C.主題模型D.情感分析8、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計分析和推斷性統(tǒng)計分析,以下敘述不正確的是()A.描述性統(tǒng)計分析主要用于對數(shù)據(jù)的集中趨勢、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計分析則是基于樣本數(shù)據(jù)對總體特征進(jìn)行估計和假設(shè)檢驗C.描述性統(tǒng)計分析只能提供數(shù)據(jù)的基本信息,對于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計分析,然后根據(jù)研究目的和數(shù)據(jù)特點選擇是否進(jìn)行推斷性統(tǒng)計分析9、對于一個包含大量數(shù)值型數(shù)據(jù)的數(shù)據(jù)集,若要快速找到數(shù)據(jù)的中位數(shù),以下哪種算法較為高效?()A.排序后取中間值B.基于分治思想的算法C.隨機(jī)選擇算法D.以上算法效率差不多10、在進(jìn)行數(shù)據(jù)可視化時,顏色的選擇和使用可以影響可視化的效果。假設(shè)我們要在一個圖表中區(qū)分不同的類別,以下哪個關(guān)于顏色選擇的原則是重要的?()A.對比度高B.符合文化和認(rèn)知習(xí)慣C.考慮色盲人群的可辨識度D.以上都是11、當(dāng)分析兩個連續(xù)變量之間的線性關(guān)系時,以下哪個統(tǒng)計量的值在-1到1之間?()A.相關(guān)系數(shù)B.決定系數(shù)C.方差膨脹因子D.協(xié)方差12、對于一個具有時間序列特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)測,以下哪種模型可能會考慮時間的滯后效應(yīng)?()A.自回歸移動平均模型B.支持向量回歸模型C.隨機(jī)森林回歸模型D.以上都可能13、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),以制定營銷策略。以下關(guān)于數(shù)據(jù)分析目的和方法的描述,正確的是:()A.主要目的是找出銷售額最高的產(chǎn)品,通過簡單排序就能實現(xiàn)B.為了預(yù)測未來銷售趨勢,應(yīng)該使用時間序列分析方法C.分析客戶地域分布對銷售的影響時,無需考慮其他因素D.要評估不同營銷渠道的效果,只需比較銷售額的大小14、數(shù)據(jù)分析中的回歸分析常用于預(yù)測和建模。假設(shè)要建立一個模型來預(yù)測房屋價格,考慮房屋面積、地理位置、房齡等因素。以下哪種回歸分析方法在處理這種多因素預(yù)測問題時表現(xiàn)更為出色?()A.線性回歸B.邏輯回歸C.多項式回歸D.嶺回歸15、在處理大數(shù)據(jù)集時,分布式計算框架能夠提高計算效率。假設(shè)要分析海量的社交媒體數(shù)據(jù),以下關(guān)于分布式計算框架選擇的描述,正確的是:()A.Hadoop適合處理大規(guī)模的結(jié)構(gòu)化數(shù)據(jù),但對實時性要求高的任務(wù)不太適用B.Spark僅能處理批處理任務(wù),無法支持流處理C.Flink在處理流數(shù)據(jù)方面表現(xiàn)不佳,主要用于批處理D.這些分布式計算框架都差不多,隨便選擇一個都能滿足需求二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋什么是對抗生成網(wǎng)絡(luò)(GAN)在數(shù)據(jù)增強(qiáng)中的應(yīng)用,說明其工作原理和優(yōu)勢,并舉例分析。2、(本題5分)在進(jìn)行數(shù)據(jù)預(yù)處理時,如何處理重復(fù)數(shù)據(jù)?解釋重復(fù)數(shù)據(jù)的產(chǎn)生原因和對分析的影響,以及常用的處理方法。3、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的倫理和道德考量?請闡述相關(guān)的原則和挑戰(zhàn),并舉例說明在實際項目中的應(yīng)對策略。4、(本題5分)簡述數(shù)據(jù)挖掘的概念和主要流程,解釋數(shù)據(jù)挖掘與傳統(tǒng)數(shù)據(jù)分析方法的區(qū)別,并說明數(shù)據(jù)挖掘在商業(yè)領(lǐng)域中的應(yīng)用場景。三、論述題(本大題共5個小題,共25分)1、(本題5分)在電信行業(yè),用戶通話記錄、網(wǎng)絡(luò)流量數(shù)據(jù)等大量存在。探討如何利用數(shù)據(jù)分析方法,比如客戶流失預(yù)測、網(wǎng)絡(luò)優(yōu)化等,提高電信服務(wù)質(zhì)量,增強(qiáng)用戶粘性,同時研究在數(shù)據(jù)隱私保護(hù)法規(guī)嚴(yán)格和技術(shù)更新?lián)Q代快方面所面臨的困難及解決途徑。2、(本題5分)探討在社交媒體的用戶行為引導(dǎo)中,如何運用數(shù)據(jù)分析設(shè)計激勵機(jī)制和規(guī)則,促進(jìn)用戶的積極行為和社區(qū)建設(shè)。3、(本題5分)在醫(yī)療領(lǐng)域,電子病歷和醫(yī)療影像等數(shù)據(jù)不斷豐富。以某大型醫(yī)院為例,闡述如何運用數(shù)據(jù)分析來輔助疾病診斷和預(yù)測,例如疾病分類模型的構(gòu)建、影像數(shù)據(jù)的分析處理、臨床數(shù)據(jù)的挖掘,以及如何解決數(shù)據(jù)質(zhì)量、隱私保護(hù)和模型解釋性等關(guān)鍵問題。4、(本題5分)在農(nóng)業(yè)保險領(lǐng)域,農(nóng)作物受災(zāi)數(shù)據(jù)、保險理賠數(shù)據(jù)等日益重要。探討如何利用數(shù)據(jù)分析方法,比如災(zāi)害風(fēng)險評估、保險費率制定等,優(yōu)化農(nóng)業(yè)保險業(yè)務(wù),同時研究在數(shù)據(jù)采集困難、災(zāi)害預(yù)測準(zhǔn)確性和政策補貼影響方面所面臨的困難及解決途徑。5、(本題5分)教育行業(yè)正在積極探索利用數(shù)據(jù)分析提升教學(xué)效果。以某在線教育平臺為例,討論如何基于學(xué)生的學(xué)習(xí)行為數(shù)據(jù)進(jìn)行學(xué)習(xí)路徑推薦和個性化教學(xué),包括數(shù)據(jù)采集、學(xué)生畫像構(gòu)建、課程推薦算法,以及如何評估教學(xué)改進(jìn)的效果。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)一家手機(jī)配件店擁有銷售數(shù)據(jù)、手機(jī)型號熱度、配件流行趨勢等。及時更新手機(jī)配件種類,滿足市場需求。2、(本題10分)某銀行擁有客戶的賬戶交易記錄、理財產(chǎn)品購買記錄、風(fēng)險偏好等數(shù)據(jù)。研究如何基于這些數(shù)據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論