下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共1頁香港中文大學(深圳)
《品牌形象設(shè)計》2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的視頻壓縮是為了減少視頻數(shù)據(jù)的存儲空間和傳輸帶寬。假設(shè)要對一段高清視頻進行壓縮,同時保持較好的視覺質(zhì)量。以下關(guān)于視頻壓縮方法的描述,正確的是:()A.幀內(nèi)壓縮通過去除圖像內(nèi)部的冗余信息實現(xiàn)壓縮,對圖像質(zhì)量影響較小B.幀間壓縮利用相鄰幀之間的相似性進行壓縮,但會引入明顯的失真C.運動估計在幀間壓縮中不重要,對壓縮效率提升作用不大D.視頻壓縮的碼率越低,壓縮效果越好,視覺質(zhì)量也越高2、計算機視覺在安防監(jiān)控領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一個商場需要通過監(jiān)控攝像頭進行人員異常行為檢測。以下關(guān)于安防監(jiān)控中的計算機視覺的描述,哪一項是不正確的?()A.可以實時監(jiān)測人群的流動情況,發(fā)現(xiàn)擁堵和異常聚集B.能夠識別人員的打斗、摔倒等異常行為,并及時發(fā)出警報C.計算機視覺系統(tǒng)能夠完全取代人工監(jiān)控,不需要人類保安的參與D.可以與其他安防設(shè)備(如門禁系統(tǒng))聯(lián)動,提高安防水平3、在計算機視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學圖像中的病變區(qū)域精確地分割出來,以便醫(yī)生進行診斷和治療。這張醫(yī)學圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復(fù)雜情況時可能更具優(yōu)勢?()A.基于閾值的分割方法,根據(jù)像素值設(shè)定閾值進行分割B.基于區(qū)域生長的分割方法,從種子點開始逐漸擴展區(qū)域C.基于深度學習的語義分割算法,如U-NetD.隨機分割圖像,然后根據(jù)后續(xù)分析進行調(diào)整4、計算機視覺中的目標計數(shù)是估計圖像或視頻中目標的數(shù)量。假設(shè)要在一張人群圖像中準確計數(shù)人數(shù),以下關(guān)于目標計數(shù)方法的描述,正確的是:()A.基于檢測的計數(shù)方法通過檢測每個個體來實現(xiàn)計數(shù),對密集場景效果好B.基于回歸的計數(shù)方法直接預(yù)測目標數(shù)量,計算速度快但精度較低C.深度學習中的注意力機制在目標計數(shù)中沒有作用,不能提高計數(shù)準確性D.目標計數(shù)只需要考慮目標的外觀特征,不需要考慮圖像的上下文信息5、在計算機視覺的目標識別任務(wù)中,假設(shè)要識別不同種類的水果。以下關(guān)于應(yīng)對類內(nèi)差異和類間相似性的策略,哪一項是不正確的?()A.增加訓練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內(nèi)差異和類間相似性的影響C.降低模型的復(fù)雜度,避免過度擬合類內(nèi)差異和類間相似性D.忽略類內(nèi)差異和類間相似性,依靠模型的自動適應(yīng)能力6、在計算機視覺領(lǐng)域中,當需要對監(jiān)控視頻中的行人進行實時檢測和跟蹤,以實現(xiàn)智能安防系統(tǒng)的功能時,以下哪種方法在處理復(fù)雜場景和多目標跟蹤方面可能表現(xiàn)更為出色?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學習的目標檢測算法C.基于特征匹配的跟蹤算法D.基于光流法的跟蹤算法7、計算機視覺中的姿態(tài)估計是確定物體在三維空間中的位置和方向。假設(shè)要估計一個機器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,哪一項是不正確的?()A.基于視覺的姿態(tài)估計可以通過分析物體在圖像中的特征點來計算其姿態(tài)B.可以結(jié)合多個攝像頭的圖像信息,提高姿態(tài)估計的精度和魯棒性C.姿態(tài)估計通常需要先對物體進行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計的結(jié)果總是非常準確,不受圖像噪聲、遮擋和物體形狀變化的影響8、在計算機視覺的目標跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標。假設(shè)我們要跟蹤一個在人群中快速移動的人物,以下哪種目標跟蹤算法能夠更好地處理目標的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學習的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法9、在計算機視覺的人臉識別任務(wù)中,需要應(yīng)對姿態(tài)、表情和光照等變化。假設(shè)要構(gòu)建一個能夠在不同環(huán)境下準確識別人臉的系統(tǒng),以下哪種人臉識別方法在處理這些變化時具有更高的準確性和魯棒性?()A.基于特征點的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別D.基于幾何形狀的人臉識別10、在計算機視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對一張受到嚴重噪聲污染的圖像進行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時很好地保留圖像的細節(jié)B.中值濾波對椒鹽噪聲的去除效果不佳C.基于深度學習的圖像去噪方法可以自適應(yīng)地學習噪聲模式和圖像特征D.圖像去噪不會引入任何新的失真或模糊11、計算機視覺中的車牌識別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個高速公路收費站實現(xiàn)準確的車牌識別,以下關(guān)于車牌識別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強的適應(yīng)性B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識別出字符,但對車牌的傾斜和光照不均敏感C.車牌識別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運行D.車牌識別的準確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關(guān)12、計算機視覺中的動作識別旨在識別視頻中的人物動作。假設(shè)我們要對一段包含復(fù)雜背景和多人交互的視頻進行動作識別,以下哪種特征表示可能對提高識別準確率有幫助?()A.基于光流的特征B.基于圖像直方圖的特征C.基于像素值的原始特征D.基于圖像邊緣的特征13、在計算機視覺的醫(yī)學圖像分析中,輔助醫(yī)生進行疾病診斷。假設(shè)要通過分析CT圖像檢測腫瘤的位置和大小,以下關(guān)于醫(yī)學圖像計算機視覺應(yīng)用的描述,正確的是:()A.計算機視覺算法可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進一步判斷B.不同患者的個體差異和掃描參數(shù)的變化對腫瘤檢測結(jié)果沒有影響C.結(jié)合醫(yī)生的先驗知識和計算機視覺技術(shù)能夠提高腫瘤檢測的準確性和可靠性D.醫(yī)學圖像中的噪聲和偽影對計算機視覺算法的性能沒有影響14、計算機視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關(guān)于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗知識進行關(guān)聯(lián)和解釋B.知識圖譜可以為語義理解提供豐富的語義信息和關(guān)系C.語義理解在圖像描述生成、問答系統(tǒng)等任務(wù)中發(fā)揮著重要作用D.語義理解已經(jīng)達到了非常完美的程度,能夠準確理解任何復(fù)雜的圖像或視頻內(nèi)容15、計算機視覺中的光流計算用于估計圖像中像素的運動。假設(shè)要對一個快速運動的物體進行光流估計,同時場景中存在光照變化和噪聲干擾。在這種情況下,以下哪種光流計算方法能夠提供更準確和穩(wěn)定的結(jié)果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋計算機視覺中的注意力機制在圖像理解中的作用。2、(本題5分)簡述圖像的仿射變換特點。3、(本題5分)解釋計算機視覺中的車牌識別技術(shù)。4、(本題5分)解釋計算機視覺中的聯(lián)邦學習在分布式數(shù)據(jù)處理中的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)利用深度學習算法,對不同種類的魚干圖像進行分類。2、(本題5分)運用圖像識別算法,對不同類型的家具圖像進行分類和識別。3、(本題5分)基于計算機視覺的疲勞駕駛檢測系統(tǒng),及時提醒駕駛員注意休息。4、(本題5分)運用深度學習模型,對古代建筑的風格和年代進行鑒定。5、(本題5分)基于計算機視覺的智能超市購物系統(tǒng),通過商品圖像識別實現(xiàn)自助結(jié)賬。四、分析題(本大題共4個小題,共40分)1、(本題10分)分析某品牌的宣傳視頻剪輯技巧,探討其如何運用剪輯技巧和特效,增強視頻的節(jié)奏感和吸引力,傳達品牌的故事和價值觀。2、(本題10分)分析某時尚品牌的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋼化玻璃采購框架合同
- 2025版股權(quán)轉(zhuǎn)讓延期協(xié)議書3篇
- 2024年音樂制作錄制標準化協(xié)議模板解析版B版
- 百色職業(yè)學院《中國古代文學6》2023-2024學年第一學期期末試卷
- 2024年貨運代理與供應(yīng)鏈金融服務(wù)合同
- 2025年度數(shù)據(jù)中心網(wǎng)絡(luò)安全系統(tǒng)安裝施工款項合同模板2篇
- 2025年度航空航天零部件制造與供應(yīng)合同范本3篇
- 2025版甲方與聯(lián)合體數(shù)字經(jīng)濟產(chǎn)業(yè)園區(qū)合同范本3篇
- 2025版互聯(lián)網(wǎng)數(shù)據(jù)中心按揭租賃合同3篇
- 二零二五年cro項目成果轉(zhuǎn)化合同范本2篇
- 重慶氣體行業(yè)協(xié)會
- 公司走賬合同范本
- 獲獎一等獎QC課題PPT課件
- 企業(yè)中高層人員安全管理培訓--責任、案例、管理重點
- 人教版小學三年級數(shù)學上冊判斷題(共3頁)
- 國際項目管理手冊The Project Manager’s Manual
- 小學五年級思政課教案三篇
- 高強螺栓施工記錄
- 一億以內(nèi)的質(zhì)數(shù)表(一)
- (完整版)倒插、翻口、評點文件
- 病理生理學缺氧
評論
0/150
提交評論