2024年追逐夢想:歐洲工業(yè)生產(chǎn)力的發(fā)展報告(英文版)-國際貨幣基金組織_第1頁
2024年追逐夢想:歐洲工業(yè)生產(chǎn)力的發(fā)展報告(英文版)-國際貨幣基金組織_第2頁
2024年追逐夢想:歐洲工業(yè)生產(chǎn)力的發(fā)展報告(英文版)-國際貨幣基金組織_第3頁
2024年追逐夢想:歐洲工業(yè)生產(chǎn)力的發(fā)展報告(英文版)-國際貨幣基金組織_第4頁
2024年追逐夢想:歐洲工業(yè)生產(chǎn)力的發(fā)展報告(英文版)-國際貨幣基金組織_第5頁
已閱讀5頁,還剩39頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

ChasingtheDream:

Industry-Level

Productivity

DevelopmentsinEurope

SerhanCevik,SadhnaNaik,andKeyraPrimus

WP/24/258

NATn

2024

DEC

ARY

?2024InternationalMonetaryFundWP/24/258

IMFWorkingPaper

EuropeanDepartment

ChasingtheDream:Industry-LevelProductivityDevelopmentsinEuropePreparedbySerhanCevik,SadhnaNaikandKeyraPrimus1

AuthorizedfordistributionbyKazukoShironoDecember2024

IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.

Abstract

Europeancountriesarelaggingbehindinproductivitygrowth,withsignificantproductivitygaps

acrossindustries.Inthisstudy,weusecomparableindustry-leveldatatoexplorethepatternsandsourcesoftotalfactorproductivity(TFP)growthacross28countriesinEuropeovertheperiod

1995–2020.Ourempiricalresultshighlightfourmainpoints:(i)TFPgrowthisdrivenlargelybytheextenttowhichcountriesareinvolvedinscientificandtechnologicalinnovationastheleader

countryorbenefitingfromstrongerknowledgespillovers;(ii)thetechnologicalgapisassociated

withTFPgrowthascountriesmovetowardsthetechnologicalfrontierbyadoptingnewinnovationsandtechnologies;(iii)increasedinvestmentininformationandcommunicationstechnology(ICT)

capitalandresearchanddevelopment(R&D)contributessignificantlytohigherTFPgrowth;and(iv)theimpactofhumancapitaltendstobestrongerwhenacountryisclosertothetechnologicalfrontier.ThecorefindingsofthisstudycallforpolicymeasuresandstructuralreformstopromoteinnovationandfacilitatethediffusionofnewandexistingtechnologiesacrossEurope.

JELClassificationNumbers:

H32;H40;L50;L60;L80;O30;O40;O52

Keywords:

Totalfactorproductivity;technology;R&D;innovation;humancapital;Europe

Author’sE-MailAddress:

scevik@;

snaik@;

kprimus@

1TheauthorswouldliketothankSandraBaquie,HelgeBerger,LukasBoer,BorjaGracia,VincenzoGuzzo,FlorenceJaumotte,andYangYangforvaluablecommentsandsuggestions.

3

Productivityisn'teverything,but,inthelongrun,itisalmosteverything.

—PaulKrugman

I.INTRODUCTION

Followinganextendedperiodofeconomictranquilityandrapidincomeconvergence,Europe

hasexperiencedabarrageoflargeshocksinrecentyearsthatresultedindivergingtrendsin

productivitygrowth,whichiskeytoraisingmateriallivingstandards,expandingtheeconomy’sgrowthpotential,andstrengtheninginternationalcompetitiveness.Understandingthedriversoftotalfactorproductivity(TFP)growth—ameasureoftechnologicaladvancementsandthe

efficiencyinutilizingfactorsofproduction—isthereforenecessarytodeveloppoliciesthatcanhelpstrengthengrowthprospects.WeobservethataggregateTFPgrowthintheEuropean

Union(EU)declinedfromanaverageof0.7percentbetween1996and2007to0.1percentover

theperiod2009–2019and-2percentin2020duringtheCOVID-19pandemic(Figure1).WealsodetectsignificantvariationinaverageTFPgrowthratesacrosstheEUovertheperiod1996–2020,

withaminimumof-2percentinGreecetoamaximumof2percentinSlovakia.These

productivitydevelopmentsattheaggregatelevel,however,canreflectsignificantstructuraldifferencesinhumanandphysicalcapitalaccumulationandtechnologicalprogressatthe

industrylevel.Accordingly,toprovideagranularempiricalassessment,thispaperfocusesonindustry-levelproductivitydevelopmentsthatdeterminetheaggregate.

TheproductivitygapbetweentheEUandtheUShaswidenedaftertheglobalfinancialcrisis

(GFC)in2008,withEUcountrieslaggingbehindinproductivitygrowth(Cette,Fernald,and

Mojon,2016;FernaldandInklaar,2020).Furthermore,therearesignificantproductivitygaps

acrossEUcountriesandindustries,whichhavebecomemoreprominentaftertheGFC.Inthis

study,welookbeyondthebroadcontoursofproductivitygrowthandusecomparableindustry-leveldata—drawnfromtheEU-KLEMSdataset—toexplorethepatternsandsourcesofTFP

growthacross28Europeancountriesovertheperiod1995–2020.Wecontributetotheliteraturebyusingthelatestandmostcomprehensiveindustry-leveldatasetincludingthepandemic

periodanddevelopingagranularanalysisoftradableandnon-tradablesectorsofthe

Figure1.TotalFactorProductivity(TFP)Growth

AverageTFPGrowth

(Percent)

8

6

4

2

0

-2

-4

-6

-8

Inter-QuartileRangeEU:TFPGrowth

1996199820002002200420062008201020122014201620182020

AverageTFPGrowth,1996-20201/

(Percent)

2.5 21.5 10.5 0-0.5 -1-1.5 -2-2.5

EL

PT

LU

HR

ES

IT

CY

SE

IE

FR

BE

NL

UK

DK

HU

EE

SI

AT

DE

CZ

PL

FI

LT

BG

LV

RO

SK

1/Time-spancoveredforeachcountryvariesdependingondataavailability.

Sources:EUKLEMS;authors’calculations.

4

economy.ThisrichsectoraldatasetcoveringalargenumberofeconomiesoveranextendedperiodbeforeandaftertheGFCallowsustoanalyzetheheterogeneityoftradableandnon-tradablesectorswithinandacrosscountries,aswellaswithin-sectorandbetween-sector

developmentsthataresensitivetoaggregationbias(deVriesetal.,2012;üng?r,2017).

Ourempiricalresults,inlinewithpreviousstudies,highlightfourmainpoints.2First,TFPgrowthisdrivenlargelybytheextenttowhichcountriesareinvolvedinscientificandtechnological

innovationastheleadercountryorbenefitingfromstrongerknowledgespillovers.Second,thetechnologicalgap—measuredbyacountry’sTFPdistancetothefrontier—isassociatedwithTFPgrowthascountriesmovetowardsthetechnologicalfrontierbyadoptingnewinnovationsand

technologies,asshowninFigure2.Third,increasedinvestmentininformationand

communicationstechnology(ICT)capitalandresearchanddevelopment(R&D)contributes

significantlytohigherTFPgrowthacrossallEUcountries.Fourth,humancapitalasmeasuredbytheintensityofhigh-skilledlaborattheindustryleveldoesnotappeartohaveastatistically

significantimpactonTFPgrowth,butthereissomeevidencethatthiseffectisstrongerwhenacountryisclosertothetechnologicalfrontierandhumancapitalmattersmoreinnon-tradablesthantradablesectorsoftheeconomy.Foramoregranularassessment,wealsoexplorethe

interactionofindustry-levelfactorswiththetechnologicalgapandfindthatbothICTandnon-ICTcapitalexpenditurestendtomoderatethenegativeeffectofthetechnologicalgaponTFP

growth.Lastly,weestimatethemodelforsubsamplesandshowthatthetechnologicalgapisanimportantdriveroftheTFPslowdowninpost-GFCperiod.

TFPgrowthintheEUstagnatedaftertheGFCandturnednegativewiththeCOVID-19pandemic,withsizableproductivitygapsbetweendifferentindustriesandacrosscountries.Reversingthe

downwardtrendandboostingproductivitygrowtharekeytoraisinglivingstandardsamidadversedemographictransitionsandglobaleconomicrealignments.Asourindustry-level

Tradables

4-

2-

TechnologicalGap

Figure2.TFPGrowthandTechnologicalGap

Non-Tradables

TechnologicalGap

Note:Thesechartsshowabinnedscatterplotof9,151observations.

Sources:EUKLEMS;authors’calculations.

2Theindustry-levelanalysispresentedinthispaperisbroadlyconsistentwithfirm-levelestimationsforEurope,whichalsohighlighttheimportanceofR&Dinvestmenttoboostproductivitygrowth(IMF,2024a).

5

empiricalanalysisindicates,revampingtangibleandintangiblecapitalinvestmentinnew

technologiescangeneratehigherTFPgrowthdirectlyandindirectlybyclosingthetechnologicalgapvis-à-visthefrontier.Wealsofindsomeevidencethathumancapitalmattersmorewhenacountryisclosertothetechnologicalfrontier,especiallyinnon-tradablesectors.Basedonthesefindings,thepriorityshouldbetocreateaconduciveenvironmenttoraisebusinessinvestmentandimprovecapitalallocationbyprovidingincentivesforcapitalinvestmentandR&Dand

strengtheninghumancapitalaccumulationthrougheducationandhealthcare,whichcaninturnpromoteinnovationandfacilitatethediffusionofnewandexistingtechnologiestocountries

belowthetechnologyfrontier,withpositivespilloversacrossindustries(Akcigit,Baslandze,andStantcheva,2016;Akcigit,Hanley,andSerrano-Velarde,2021;IMF,2024b).

TheempiricalanalysispresentedinthispapersuggestsanimportantroleforpoliciesinreducingthetechnologicalgapamongcountriesinEurope.Narrowinginnovationandtechnologygaps

vis-à-visthefrontierandexpandingthefrontierarekeytoadvancingproductivitygrowthonasustainablebasis.Thisrequires(i)revampingtangibleandintangiblecapitalinvestmentinnewtechnologiesand(ii)strengtheninghumancapitalforrapidprogressinscienceandtechnology.ThepriorityshouldthereforebegiventocreatingaconduciveenvironmentforhigherbusinessinvestmentandbettercapitalallocationbyprovidingincentivesforcapitalinvestmentandR&Dandstrengtheninghumancapitalaccumulationthrougheducationandhealthcare,whichcanin

turnpromoteinnovationandfacilitatethediffusionofnewandexistingtechnologiestocountriesbelowthetechnologyfrontier,withpositivespilloversacrossindustries.

Theremainderofthisstudyisorganizedasfollows.SectionIIprovidesabriefoverviewofthe

relatedliterature.SectionIIIdescribesthedatausedintheanalysis.SectionIVintroducesthe

salientfeaturesofoureconometricstrategy.SectionVpresentstheempiricalresults,includingaseriesofrobustnesschecks.Finally,SectionVIsummarizesandprovidesconcludingremarkswithpolicyimplications.

II.LITERATUREREVIEW

Theconceptualframeworkfortheanalysispresentedinthispaperisbasedonthestandard

modelofconditionalconvergence.Thisimpliesthatcountriescancatchuptothetechnological

frontier.However,differencesinsteady-statelevelsofproductivitydependonstructuralfeaturesoftheeconomy,suchaslaborandproductmarketregulations,qualityofinstitutionaland

physicalinfrastructure,sociodemographicfactors,technologyinnovationandadoption,amongothers.Thereisarichliteratureaimingtoexplaincross-countrydifferentialsinproductivityandincomegrowthpatterns(Solow,1956,1957;Swan,1956;Bartelsman,Haltiwanger,andScarpetta,2013;CraftsandO’Rourke,2013;Cette,Fernald,andMojon,2016;égert,2016;Crafts,2018).

Forlaborproductivity,studiesfindthatphysicalandhumancapitalaccumulationarethemaindeterminantsoflaborproductivitygrowthandkeycontributorsofthedivergenceacross

countries(Lucas,1988;Wolff,1991;BenhabibandSpiegel,1994;Maudos,Pastor,andSerrano,2000;Barro,2001;KumarandRussell,2002;HendersonandRussell,2005;F?re,Grosskopf,andMargaritis,2006;EnfloandHjertstrand,2009;HanushekandWoessmann,2015;égert,dela

6

Maisonneuve,andTurner,2023).Thesefindingssuggestthatincreasingproductivityrequires

economicpoliciesdesignedtoreducebarrierstocapitaldeepeningandimprovetheeducationandhealthoftheworkforce.

Anotherimportantfactorincross-countrydifferencesinproductivitygrowthisscientificprogressandtechnologicalchange(NelsonandPhelps,1966;Romer,1987,1990;GrosmanandHelpman,1991;AghionandHowitt,1992;Greenwood,Hercowitz,andKrusell,1997;ArcelusandArozena,1999;Hulten,2001;Krüger,2003;GuellecandvanPottelsberghedelaPotterie,2004;Margaritis,F?re,andGrosskopf,2007;vanArk,O’Mahony,andTimmer,2008;Badunenko,Henderson,and

Zelenyuk,2008;Syverson,2011;Araujo,Vostroknutova,andWacker,2017).Griffith,Redding,andVanReenen(2004),InklaarandTimmer(2007),Jorgenson,Ho,andStiroh(2008)andSchiersch,Belitz,andGornig(2015)developamoregranularapproachtoanalyzeTFPgrowthandobtain

similarevidenceattheindustrylevel.ThesefindingsindicatethateconomicpolicyshouldalsoaimatfosteringR&Dandthediffusionofnewtechnologiestoboostproductivity.

PublicinfrastructureiscriticalforeffectiveandefficienteconomicactivityandtherebyTFP

growthbyenablingfirmstoinvestinmoreproductivemachinery,preventingdelaysin

production,andcontributingtoeducationandhealthcareoftheworkforce(Aschauer,1989;

Munnell,1992;Hulten1996;Straub,2011;Deng,2013;CalderonandServen,2014;égert,2016).Thequalityofinstitutionalinfrastructureisnolessimportantforpoliticalandsocioeconomic

stabilityandeconomicdevelopmentbysafeguardingcivilandpropertyrightsandprovidingasafelivingandworkingenvironment(North,1990;KnackandKeefer,1995;EasterlyandLevine,2003;Acemoglu,Johnson,andRobinson,2004;Rodrik,Subramanian,andTrebbi,2004;ChandaandDalgaard,2008).Physicalinfrastructureandinstitutionsalsoplayanimportantroleintradeopenness,financialdevelopmentandtheefficientallocationofresources,whichinturn

determineproductivitygrowthacrossfirmsandindustries(GrossmanandHelpman,1991;

Edwards,1998;Beck,Levine,andLoayza,2000;MillerandUpadhay,2000;Foster,Haltiwanger,andKrizan,2001;AlcaláandCiccone,2004;HisehandKlenow,2009;RestucciaandRogerson,2017;CevikandMiryugin,2018).

III.DATAOVERVIEW

Theempiricalanalysispresentedinthispaperisbasedonanunbalancedpanelofannual

observationson26industriesin28EUcountriesduringtheperiod1995–2020.3Theprimary

datasetforindustry-leveldataisobtainedfromtheEU-KLEMSdatabase,whichprovideshigh-

qualitymeasuresofeconomicgrowth,productivity,employmentcreation,capitalformationandtechnologicalchangeattheindustrylevelforallEUmemberstates.4Inparticular,itmakesdataavailableondifferenttypesofcapitalandskills-differentiatedcategoriesoflabor.Grossoutputisdecomposedintothecontributionsofintermediateinputs(i.e.,energy,materials,andservices)as

3IndustriesaregroupedaccordingtothestatisticalclassificationofeconomicactivitiesbasedontheNomenclaturedesActivitéséconomiquesdanslaCommunautéEuropéenne(NACE).

4Thelatestreleaseofthedatasetispubliclyavailableat

https://euklems-intanprod-llee.luiss.it/

(Bontadinietal.,2023).O’MahonyandTimmer(2009)provideadetaileddescriptionofthecontentsandconstructionoftheEU-KLEMSdatabase.

7

wellasvalue-added,whichinturnisdecomposedtothecontributionsfromdifferenttypesofcapitalandlabor.

Dataareavailableforsevendifferenttypesofcapital,whichareaggregatedbasedontheuser

costofcapitaltoproducecapitalserviceflowsthattakeintoaccountthedifferentmarginal

productivitiesofthedifferentcomponentsofacountry’scapitalaccumulation.Inadditionto

aggregatemeasures,theEU-KLEMSdatabasealsomakesavailablethebreakdownforICTand

non-ICTphysicalcapitalspendingasashareofgrossfixedinvestment.5Wealsoobtainindustry-leveldataonintangiblecapitalaccumulationasmeasuredbyR&Dexpenditureasashareof

grossfixedinvestment.

Laborinputsaredifferentiatedwithrespecttoskilllevelsasmeasuredbyeducationalattainment(primary,secondary,andtertiary),age,andgender.Inthispaper,weusetheshareoftotal

workinghoursprovidedbyworkerswithtertiaryeducationtomeasuretheshareofhigh-skilledlaborinagivenindustry.Comparablecross-countrydataattheindustrylevelareavailablefor

threedifferentskilllevels,withlaborinputsaggregatedbasedonmarginalproductivities.ThesegranulardataseriesallowtheassessmentofTFPdevelopmentsexcludingtheimpactofchangesinthecompositionandqualityofbothcapitalandlaborinputs.

Thedependentvariableinthisstudyisindustry-levelTFPgrowth,whichiscommonlymeasuredasaresidualafteraccountingforphysicalcapitaldeepeningandhumancapitalaccumulation.TheEU-KLEMSdatabaseprovidesadecompositionofGDPgrowthintoitsmaindeterminants

basedonaproductionfunctionwhichincludesproductivecapitalandemploymentlevels

adjustedforhoursworked,age,andforskillcomposition.Accordingly,TFPgrowthisdefinedasaresidualterm:

Δyijt=Δvijt?wvijt?wΔkijt?wΔLijt

whereΔyijtisTFPgrowthincountryiandindustryjattimetandV,K,andLdenotevalue-

added,capital,andlabor,respectively.Thecoefficientswandwaretheaverageshareof

capitalandlaborinputs,respectively.Tomitigatetheeffectsofextremeoutliers,wewinsorizeindustry-levelvariablesatthe5thand95thpercentiles.

ThemainexplanatoryvariablesofinterestattheindustrylevelaretheTFPgrowthfrontieras

measuredbythehighestlevelofTFPgrowthinagivenindustryandyearandthetechnologicalgapasmeasuredbythedistancetofrontierdefinedasthelevelofTFPofacountryinagiven

industryandyearrelativetothehighestlevelofTFPinthatindustryintheEU.Thisrelative

distancetothefrontierrepresentsthepotentialforincreasingTFPbyadoptingnewproductivity-enhancingknowledgeandtechnologies.Inaddition,weincludearangeofmacroeconomicandinstitutionalfactorsatthecountrylevel,suchasrealGDPpercapita,consumerpriceinflation,

tradeopenness,domesticcredittotheprivatesector(i.e.financialdevelopment),population,andbureaucraticqualityascontrolvariables,whicharedrawnfromtheIMF’sWorldEconomic

5ICTassetsincludecomputers,softwareandtelecommunicationequipment,whilenon-ICTassetsareproxiedbytransportationequipment.

8

Outlook(WEO),theWorldBank’sWorldDevelopmentIndicators(WDI),andtheInternationalCountryRiskGuide(ICRG)databases.

SummarystatisticsforthevariablesusedintheanalysisarepresentedinTable1.Weobserve

significantheterogeneityinaggregateandindustry-levelproductivitygrowthbetween28EU

countries,across26sectors,andovertheperiod1995–2020.AggregateTFPgrowthwas0.7

percentperyearonaverageintheEUbetween1996and2007butdeceleratedto0.1percent

aftertheGFC.Asaresult,overtheentiresampleperiodfrom1996to2020,averageTFPgrowthstoodat0.5percent,with11outof28EUcountriespresentinganegativeTFPgrowth.WealsoobservethatTFPgrowthinaccommodationandfoodservices—thelowestproductivitysector—was1.6percentagepointslowerthantheaverageTFPgrowthacrossallsectorsduringthe

sampleperiod,whileTFPgrowthinagriculture—thehighestproductivitysector—was1.4

percentagepointshigherthantheaverageTFPgrowth.Thereisalsosignificantheterogeneityinthetechnologicalgap.Withanaverageof-19.2percent,itvariesfrom-67.7percentto0percent.

Withregardstoindustry-levelfactors,weobservesimilarlylargevariationacrosssectors(Figure3).ICTcapitalspendingaveraged12.6percentofgrossfixedinvestment,withaminimumof0

percentandamaximumof44.6percent,whilenon-ICTcapitalspendingvariedfromaminimumof0.3percentofgrossfixedinvestmenttoamaximumof32.6percent,withanaverageof8.3

percent.Likewise,R&Dexpenditureasashareofgrossfixedinvestmentamountedtoanaverageof9.5percent,withaminimumof0percentandamaximumof47.8percent.

Table1.DescriptiveStatistics

Variable

Obs

Mean

SD

Min.

Max.

Industry-level

TFPgrowth

8,438

0.5

7.0

-50.0

100.0

Technologicalgap

9,151

-19.2

16.8

-67.7

0.0

ICTcapitalspending

11,879

0.1

0.1

0.0

0.4

Non-ICTcapitalspending

14,612

0.1

0.1

0.0

0.3

R&Dspending

12,315

0.1

0.1

0.0

0.5

Country-level

RealGDPpercapita

18,021

37873.8

18718.5

9544.1

122170.6

Inflation

17,969

5.3

41.3

-1.7

1061.2

Financialdevelopment

14,369

98.5

81.8

0.2

524.6

Tradeopenness

18,021

1.1

1.0

0.0

14.0

Bureaucraticquality

17,633

3.3

0.8

1.0

4.0

Population

18,021

18.1

22.8

0.4

83.2

Source:EU-KLEMS;IMF;WorldBank;ICRG;andauthors'calculations.

9

Figure3.Industry-LevelDevelopments

AverageTFPGrowth:Pre-GFC

AverageTFPGrowth:Post-GFC

(Percent)

Agriculture

FinanceandInsuranceManufacturing

WholesaleandretailtradeICT

Energy,waterandwasteTotal

Miningandquarrying

TransportationandstorageConstruction

Publicadmin,defenseandhealthAccomodationandfoodArtsandrecreation

ProfessionalandsupportserviceRealestate

(Percent)

ManufacturingAgriculture

WholesaleandretailtradeICT

Total

Professionalandsupportservice FinanceandInsurance TransportationandstoragePublicadmin,defenseandhealthRealestate

Construction Artsandrecreation MiningandquarryingEnergy,waterandwasteAccomodationandfood

-2-1.5-1-0.500.511.52

-2-1.5-1-0.500.511.52

MedianICTInvestmentbyIndustry

(Percent,measuredasashareoftotalinvestment)

MedianNon-ICTInvestmentbyIndustry

(Percent,measuredasashareoftotalinvestment)

ICT FinanceandinsuranceProfessionalandsupportservicesWholesaleandretailtrade

Artsandrecreation

Total

ManufacturingPublicadmin,defenseandhealth Accomodationandfood TransportationandstorageConstruction

Energy,waterandwasteMiningandquarryingAgriculture

Realestate

Transportationandstorage

ProfessionalandsupportserviceConstruction

WholesaleandretailtradeAgriculture

Total

AccomodationandfoodFinanceandInsuranceMiningandquarryingArtsandrecreation

Publicadmin,defenseandhealthManufacturing

Energy,waterandwasteICT

Realestate

010203040

AverageShareofHighSkillLaborbyIndustry

(Percent,measuredasshareoftotalemploymentineachindustry)

ICT

FinanceandInsurance

Realestate

TotalMiningandquarrying

ManufacturingWholesaleandretailtradeTransportationandstorage AccomodationandfoodConstruction

Agriculture

020406080

0204060

MedianR&DInvestmentbyIndustry

(Percent,measuredasashareoftotalinvestment)

ManufacturingProfessionalandsupportservicesPublicadmin,defenseandhealth

ICT

Total ArtsandrecreationWholesaleandretailtrade MiningandquarryingFinanceandInsurance

ConstructionEnergy,waterandwaste

AgricultureTransportationandstorageRealestate

Accomodationandfood

05101520

Sources:EUKLEMS;andauthors’calculations.

IV.ECONOMETRICMETHODOLOGY

Beyondglobalshocks,thereisamyriadoffactorscontributingtotheproductivityslowdownandcross-countryproductivitydifferentials.Inthispaper,wedevelopagranularanalysisbyusing

comparableindustry-leveldata—drawnfromtheEU-KLEMSdataset—andexplorethepatterns

andsourcesofTFPgrowthacrossthe28EUcountries.FollowingScarpettaandTressel(2002),

NicolettiandScarpetta(2003),Griffith,Redding,andVanReenen(2004),Acemoglu,Zilibotti,andAghion(2006),AghionandHowitt(2006),McMorrow,Werner,andTurrini(2010)andDabla-

10

Norrisetal.(2015),wemodelindustry-levelTFPgrowthusingthefollowingbaselinespecification:

+yj+μt+εijt

?Yijt=β0+β1?YLjt+β2(Yijt?1?YLjt?1)+βk∑kxt?1+βl∑kxjt?1(Yijt?1?YLjt?1)+ηi

inwhich?YijtisTFPgrowthincountryiandindustryjattimet.?YLjtdenotestheTFPgrowth

frontierintheEU,whichismeasuredbythehighestlevelofTFPgrowthinindustryjattimet.

TheTFPgrowthfrontiercapturestheextenttowhichcountriesareinvolvedincomparable

scientificandtechnologicalinnovationastheleadercountryorbenefitingfromknowledge

spillovers.(Yijt?1?YLjt?1)isthetechnologicalgapdefinedastheTFPdifferenceincountryiandindustryjattimetwithrespecttotheEUfrontier(highestlevelofTFP)inindustryjattimet.ThisrelativedistancetothefrontierrepresentsthepotentialforincreasingTFPbyadoptingnew

productivity-enhancingtechnologies.xt?1isavectorofindustry-levelandcountry-level

variables.Industry-levelvariablesincludeICTcapitalspending,non-ICTcapitalspending,R&Dspending,andtheshareofhigh-skilledlabor,whilecountry-levelvariablesincluderealGDPper

capita,consumerpriceinflation,tradeopenness,domesticcredittotheprivatesector,population,andbureaucraticquality.

Wealsoexplorehowindustry-levelfactors(ICTandnon-ICTcapitalexpenditures,R&Dspendingandtheshareofhigh-skilledlabor)interactwiththetechnologicalgap.Theseinteractionterms

aredesignatedbyxjt?1(Yijt?1?YLjt?1)incountryiandindustryjattimet.Thecoefficientsηi,

yjandμtdenotethetime-invariantindustry-specificeffectsandthetimeeffectscontrollingforcommonshocksthatmayaffectTFPgrowthacrossallindustriesattimet,respectively.6The

inclusionoffixedeffectsalsohelpsaddressendogeneityconcernsarisingfromomittedvariablebias.εijtistheidiosyncraticerrorterm.Robuststandarderrorsareclusteredattheindustrylevel.

V.EMPIRICALEVIDENCE

Ourbaselineresults,presentedinTable2,provideaconsistentassessmentofindustry-levelTFPgrowthin28EUcountriesovertheperiod1995–2020.Wedisplaythespecificationwithcountryfixedeffectsincolumn[1]forthewholesampleofindustries,incolumn[2]fortradablesectors,andincolumn[3]fornon-tradablesectors.7Wereplacecountryfixedeffectswitharangeof

country-levelcontrolvariablesandpresenttheseestimationsincolumn[4]forthewholesampleofindustries,incolumn[5]fortradablesectors,andincolumn[6]fornon-tradablesectors.

Becausedataontheshareofhigh-skilledlaborareavailableonlyfrom2008,wepresentthat

6Countryfixedeffectsarenotincludedwhenthemodelincorporatescountry-levelcontrolvariables.Theresultsarenotsensitivetoreplacingcountryfixedeffectswithcountry-levelvariables,whichprovideadditional

information.Wealsoobtainbroadlysimilarresultswiththeinclusionofcountry-yearandcountry-industryfixedeffects.

7Tradablesectorsincludeagriculture,forestry,fishing,mining,quarrying,andmanufacturing;whilenon-tradablesectorsincludeconstruction,wholesaleandretailtrade,transportation,storage,accommodation,foodservice,

ICT,finance,insurance,realestate,professionals

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論