吉林省白城市洮南第十中學(xué)2025屆高三一診考試數(shù)學(xué)試卷含解析_第1頁
吉林省白城市洮南第十中學(xué)2025屆高三一診考試數(shù)學(xué)試卷含解析_第2頁
吉林省白城市洮南第十中學(xué)2025屆高三一診考試數(shù)學(xué)試卷含解析_第3頁
吉林省白城市洮南第十中學(xué)2025屆高三一診考試數(shù)學(xué)試卷含解析_第4頁
吉林省白城市洮南第十中學(xué)2025屆高三一診考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省白城市洮南第十中學(xué)2025屆高三一診考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,集合,則()A. B. C. D.2.已知的面積是,,,則()A.5 B.或1 C.5或1 D.3.已知函數(shù),則下列判斷錯(cuò)誤的是()A.的最小正周期為 B.的值域?yàn)镃.的圖象關(guān)于直線對(duì)稱 D.的圖象關(guān)于點(diǎn)對(duì)稱4.已知復(fù)數(shù),滿足,則()A.1 B. C. D.55.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓.后人將這個(gè)圓稱為阿氏圓.若平面內(nèi)兩定點(diǎn),間的距離為2,動(dòng)點(diǎn)與,的距離之比為,當(dāng),,不共線時(shí),的面積的最大值是()A. B. C. D.6.根據(jù)散點(diǎn)圖,對(duì)兩個(gè)具有非線性關(guān)系的相關(guān)變量x,y進(jìn)行回歸分析,設(shè)u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計(jì)值是()A.e B.e2 C.ln2 D.2ln27.已知三棱柱的所有棱長(zhǎng)均相等,側(cè)棱平面,過作平面與平行,設(shè)平面與平面的交線為,記直線與直線所成銳角分別為,則這三個(gè)角的大小關(guān)系為()A. B.C. D.8.已知雙曲線的左,右焦點(diǎn)分別為、,過的直線l交雙曲線的右支于點(diǎn)P,以雙曲線的實(shí)軸為直徑的圓與直線l相切,切點(diǎn)為H,若,則雙曲線C的離心率為()A. B. C. D.9.設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面,則的一個(gè)充分條件是()A.且 B.且 C.且 D.且10.設(shè),,分別是中,,所對(duì)邊的邊長(zhǎng),則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直11.設(shè),,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件12.若集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、為正實(shí)數(shù),直線截圓所得的弦長(zhǎng)為,則的最小值為__________.14.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),己知A(3,1),B(-1,3),若點(diǎn)C滿足,其中α,β∈R,且α+β=1,則點(diǎn)C的軌跡方程為15.為激發(fā)學(xué)生團(tuán)結(jié)協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個(gè)班進(jìn)行班級(jí)間的拔河比賽.每?jī)砂嘀g只比賽1場(chǎng),目前(—)班已賽了4場(chǎng),(二)班已賽了3場(chǎng),(三)班已賽了2場(chǎng),(四)班已賽了1場(chǎng).則目前(五)班已經(jīng)參加比賽的場(chǎng)次為__________.16.將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣?小球在下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.己知小球每次遇到黑色障礙物時(shí),向左、右兩邊下落的概率都是,則小球落入袋中的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,過的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過軸上的定點(diǎn).18.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.19.(12分)已知的內(nèi)角的對(duì)邊分別為,且滿足.(1)求角的大小;(2)若的面積為,求的周長(zhǎng)的最小值.20.(12分)在平面直角坐標(biāo)系中,有一個(gè)微型智能機(jī)器人(大小不計(jì))只能沿著坐標(biāo)軸的正方向或負(fù)方向行進(jìn),且每一步只能行進(jìn)1個(gè)單位長(zhǎng)度,例如:該機(jī)器人在點(diǎn)處時(shí),下一步可行進(jìn)到、、、這四個(gè)點(diǎn)中的任一位置.記該機(jī)器人從坐標(biāo)原點(diǎn)出發(fā)、行進(jìn)步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達(dá)式.21.(12分)已知函數(shù).(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;(2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.22.(10分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

求出集合的等價(jià)條件,利用交集的定義進(jìn)行求解即可.【詳解】解:∵,,∴,故選:C.【點(diǎn)睛】本題主要考查了對(duì)數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運(yùn)算,屬于基礎(chǔ)題.2、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.3、D【解析】

先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項(xiàng)判斷,即可得出結(jié)果.【詳解】可得對(duì)于A,的最小正周期為,故A正確;對(duì)于B,由,可得,故B正確;對(duì)于C,正弦函數(shù)對(duì)稱軸可得:解得:,當(dāng),,故C正確;對(duì)于D,正弦函數(shù)對(duì)稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對(duì)稱,則解得:,故D錯(cuò)誤;故選:D.【點(diǎn)睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.4、A【解析】

首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運(yùn)算求出,求出的模即可.【詳解】解:,,故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)求模問題,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.5、A【解析】

根據(jù)平面內(nèi)兩定點(diǎn),間的距離為2,動(dòng)點(diǎn)與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【詳解】如圖所示:設(shè),,,則,化簡(jiǎn)得,當(dāng)點(diǎn)到(軸)距離最大時(shí),的面積最大,∴面積的最大值是.故選:A.【點(diǎn)睛】本題主要考查軌跡的求法和圓的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.6、B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質(zhì)可得最大估計(jì)值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當(dāng)時(shí),取到最大值2,因?yàn)樵谏蠁握{(diào)遞增,則取到最大值.故選:B.【點(diǎn)睛】本題考查了非線性相關(guān)的二次擬合問題,考查復(fù)合型指數(shù)函數(shù)的最值,是基礎(chǔ)題,.7、B【解析】

利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點(diǎn),為的中點(diǎn),由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補(bǔ)角,分別為,設(shè)三棱柱的棱長(zhǎng)為2,在中,,;在中,,;在中,,,.故選:B【點(diǎn)睛】本題主要考查了空間中兩直線所成角的計(jì)算,考查了學(xué)生的作圖,用圖能力,體現(xiàn)了學(xué)生直觀想象的核心素養(yǎng).8、A【解析】

在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算問題,處理雙曲線離心率問題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.9、B【解析】由且可得,故選B.10、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系11、A【解析】

根據(jù)對(duì)數(shù)的運(yùn)算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點(diǎn)睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.12、A【解析】

先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據(jù)弦長(zhǎng),半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長(zhǎng)為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對(duì)目標(biāo)式進(jìn)行變形,變成能用基本不等式求最值的形式,也可用換元法進(jìn)行變形,是中檔題.14、【解析】

根據(jù)向量共線定理得A,B,C三點(diǎn)共線,再根據(jù)點(diǎn)斜式得結(jié)果【詳解】因?yàn)?且α+β=1,所以A,B,C三點(diǎn)共線,因此點(diǎn)C的軌跡為直線AB:【點(diǎn)睛】本題考查向量共線定理以及直線點(diǎn)斜式方程,考查基本分析求解能力,屬中檔題.15、2【解析】

根據(jù)比賽場(chǎng)次,分析,畫出圖象,計(jì)算結(jié)果.【詳解】畫圖所示,可知目前(五)班已經(jīng)賽了2場(chǎng).故答案為:2【點(diǎn)睛】本題考查推理,計(jì)數(shù)原理的圖形表示,意在考查數(shù)形結(jié)合分析問題的能力,屬于基礎(chǔ)題型.16、【解析】記小球落入袋中的概率,則,又小球每次遇到黑色障礙物時(shí)一直向左或者一直向右下落,小球?qū)⒙淙氪?,所以有,則.故本題應(yīng)填.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)見解析【解析】

(1)由已知條件利用點(diǎn)斜式設(shè)出直線的方程,則可表示出點(diǎn)的坐標(biāo),再由的關(guān)系表示出點(diǎn)的坐標(biāo),而點(diǎn)在橢圓上,將其坐標(biāo)代入橢圓方程中可求出直線的斜率;(2)設(shè)出兩點(diǎn)的坐標(biāo),則點(diǎn)的坐標(biāo)可以表示出,然后直線的方程與橢圓方程聯(lián)立成方程,消元后得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系,再結(jié)合直線的方程,化簡(jiǎn)可得結(jié)果.【詳解】(1)由條件可知直線的斜率存在,則可設(shè)直線的方程為,則,由,有,所以,由在橢圓上,則,解得,此時(shí)在橢圓內(nèi)部,所以滿足直線與橢圓相交,故所求直線方程為或.(也可聯(lián)立直線與橢圓方程,由驗(yàn)證)(2)設(shè),則,直線的方程為.由得,由,解得,,當(dāng)時(shí),,故直線恒過定點(diǎn).【點(diǎn)睛】此題考查的是直線與橢圓的位置關(guān)系中的過定點(diǎn)問題,計(jì)算過程較復(fù)雜,屬于難題.18、(1);(2)見解析.【解析】

(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點(diǎn)存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數(shù)的單調(diào)性推導(dǎo)出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】(1),,,當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞增.,,,,.所以,函數(shù)在與不存在零點(diǎn),在區(qū)間和上各存在一個(gè)零點(diǎn).綜上所述,函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點(diǎn),所以,函數(shù)在區(qū)間與上各存在一個(gè)極值點(diǎn)、,且,,且滿足即,,,又,即,,,,,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)問題,同時(shí)也考查了利用導(dǎo)數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.19、(1)(2)【解析】

(1)因?yàn)?,所以,由余弦定理得,化?jiǎn)得,可得,解得,又因?yàn)?,所?(6分)(2)因?yàn)?,所以,則(當(dāng)且僅當(dāng)時(shí),取等號(hào)).由(1)得(當(dāng)且僅當(dāng)時(shí),取等號(hào)),解得.所以(當(dāng)且僅當(dāng)時(shí),取等號(hào)),所以的周長(zhǎng)的最小值為.20、(1),,,(2)【解析】

(1)根據(jù)機(jī)器人的進(jìn)行規(guī)律可確定、、的值;(2)首先根據(jù)機(jī)器人行進(jìn)規(guī)則知機(jī)器人沿軸行進(jìn)步,必須沿軸負(fù)方向行進(jìn)相同的步數(shù),而余下的每一步行進(jìn)方向都有兩個(gè)選擇(向上或向下),由此結(jié)合組合知識(shí)確定機(jī)器人的每一種走法關(guān)于的表達(dá)式,并得到的表達(dá)式,然后結(jié)合二項(xiàng)式定理及展開式的通項(xiàng)公式進(jìn)行求解.【詳解】解:(1),,(2)設(shè)為沿軸正方向走的步數(shù)(每一步長(zhǎng)度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過的最大整數(shù))總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負(fù)方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價(jià)于求中含項(xiàng)的系數(shù),為其中含項(xiàng)的系數(shù)為故.【點(diǎn)睛】本題考查組合數(shù)、二項(xiàng)式定理,考查學(xué)生的邏輯推理能力,推理論證能力以及分類討論的思想.21、(1)答案見解析(2)【解析】

(1)先對(duì)函數(shù)進(jìn)行求導(dǎo)得,對(duì)分成和兩種情況討論,從而得到相應(yīng)的單調(diào)區(qū)間;(2)對(duì)函數(shù)求導(dǎo)得,從而有,,,三個(gè)方程中利用得到.將不等式的左邊轉(zhuǎn)化成關(guān)于的函數(shù),再構(gòu)造新函數(shù)利用導(dǎo)數(shù)研究函數(shù)的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當(dāng)時(shí),則,故在上單調(diào)遞減;當(dāng)時(shí),令,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述:當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設(shè),則,∴在上單調(diào)遞減;當(dāng)時(shí),.∴,即所求的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,考查分類討論思想和數(shù)形結(jié)合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉(zhuǎn)化為單元問題,然后利用導(dǎo)數(shù)研究單變量函數(shù)的性質(zhì).22、(1);(2)證明見解析【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論