版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇省吳江市青云中學(xué)高三第五次模擬考試數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.2.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個3.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.4.已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對稱,若實數(shù)滿足,則的取值范圍是()A. B. C. D.5.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.26.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.7.若復(fù)數(shù)滿足,其中為虛數(shù)單位,是的共軛復(fù)數(shù),則復(fù)數(shù)()A. B. C.4 D.58.設(shè)全集U=R,集合,則()A. B. C. D.9.已知定義在上的函數(shù)滿足,且當(dāng)時,,則方程的最小實根的值為()A. B. C. D.10.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.411.若變量,滿足,則的最大值為()A.3 B.2 C. D.1012.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關(guān)于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.在區(qū)間內(nèi)任意取一個數(shù),則恰好為非負(fù)數(shù)的概率是________.14.請列舉用0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.15.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為______.16.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當(dāng)為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實數(shù)的取值范圍;(2)若,證明:.18.(12分)已知,其中.(1)當(dāng)時,設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.19.(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設(shè)橢圓的離心率為,當(dāng)點為橢圓的右頂點時,的坐標(biāo)為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.20.(12分)已知函數(shù),為實數(shù),且.(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對數(shù)的底數(shù)).21.(12分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過.22.(10分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.2、B【解析】
由題意,結(jié)合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關(guān)鍵,著重考查了推理與運算能力.3、A【解析】
結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項和公式和對數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項和公式應(yīng)用,屬于中檔題4、C【解析】
根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個單位長度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的圖象關(guān)于軸對稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.5、A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.6、D【解析】
連接,,因為,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計算能力.7、D【解析】
根據(jù)復(fù)數(shù)的四則運算法則先求出復(fù)數(shù)z,再計算它的模長.【詳解】解:復(fù)數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復(fù)數(shù)的計算問題,要求熟練掌握復(fù)數(shù)的四則運算以及復(fù)數(shù)長度的計算公式,是基礎(chǔ)題.8、A【解析】
求出集合M和集合N,,利用集合交集補(bǔ)集的定義進(jìn)行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補(bǔ)集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.9、C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結(jié)合此時的,通過計算即可得到答案.【詳解】當(dāng)時,,所以,故當(dāng)時,,所以,而,所以,又當(dāng)時,的極大值為1,所以當(dāng)時,的極大值為,設(shè)方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.10、D【解析】可以是共4個,選D.11、D【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點與坐標(biāo)原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.12、C【解析】
分四類情況進(jìn)行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時,,此時不存在圖象;(2)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(3)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(4)當(dāng)時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關(guān)于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先分析非負(fù)數(shù)對應(yīng)的區(qū)間長度,然后根據(jù)幾何概型中的長度模型,即可求解出“恰好為非負(fù)數(shù)”的概率.【詳解】當(dāng)是非負(fù)數(shù)時,,區(qū)間長度是,又因為對應(yīng)的區(qū)間長度是,所以“恰好為非負(fù)數(shù)”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關(guān)鍵是能判斷出目標(biāo)事件對應(yīng)的區(qū)間長度.14、231,321,301,1【解析】
分個位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當(dāng)個位數(shù)字是1時,數(shù)字可以是231,321,301;(2)當(dāng)個位數(shù)字是3時數(shù)字可以是1.故答案為:231,321,301,1【點睛】本題考查了分類計數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.15、【解析】
設(shè)圓柱的軸截面的邊長為x,可求得,代入圓柱的表面積公式,即得解【詳解】設(shè)圓柱的軸截面的邊長為x,則由,得,∴.故答案為:【點睛】本題考查了圓柱的軸截面和表面積,考查了學(xué)生空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.16、①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當(dāng)為中點時,以點D為坐標(biāo)原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當(dāng)點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當(dāng)為中點時,以點D為坐標(biāo)原點,建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當(dāng)點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設(shè)點的坐標(biāo)為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進(jìn)行求解,屬于難度題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)求出導(dǎo)函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時可證結(jié)論.【詳解】(1)因為在上單調(diào)遞減,所以,即在上恒成立因為在上是單調(diào)遞減的,所以,所以(2)因為,所以由(1)知,當(dāng)時,在上單調(diào)遞減所以即所以.【點睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.解題關(guān)鍵是把不等式與函數(shù)的結(jié)論聯(lián)系起來,利用函數(shù)的特例得出不等式的證明.18、(1)極大值,無極小值;(2).(3)見解析【解析】
(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導(dǎo),再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對數(shù)的運算性和放縮法即可證明.【詳解】解:(1)當(dāng)時,設(shè)函數(shù),則令,解得當(dāng)時,,當(dāng)時,所以在上單調(diào)遞增,在上單調(diào)遞減所以當(dāng)時,函數(shù)取得極大值,即極大值為,無極小值;(2)因為,所以,因為在區(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當(dāng)時,在區(qū)間上恒成立,當(dāng)時,,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當(dāng)時,函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所以【點睛】此題考查了參數(shù)的取值范圍以及恒成立的問題,以及不等式的證明,構(gòu)造函數(shù)是關(guān)鍵,屬于較難題.19、(1);(2)不存在,理由見解析【解析】
(1)寫出,根據(jù),斜率乘積為-1,建立等量關(guān)系求解離心率;(2)寫出直線AB的方程,根據(jù)韋達(dá)定理求出點B的坐標(biāo),計算出弦長,根據(jù)垂直關(guān)系同理可得,利用等式即可得解.【詳解】(1)由題可得,過點作直線交橢圓于點,且,直線交軸于點.點為橢圓的右頂點時,的坐標(biāo)為,即,,化簡得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯(lián)立得:,設(shè)B的橫坐標(biāo),根據(jù)韋達(dá)定理,即,,所以,同理可得若存在使得成立,則,化簡得:,,此方程無解,所以不存在使得成立.【點睛】此題考查求橢圓離心率,根據(jù)直線與橢圓的位置關(guān)系解決弦長問題,關(guān)鍵在于熟練掌握解析幾何常用方法,尤其是韋達(dá)定理在解決解析幾何問題中的應(yīng)用.20、(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】
(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)間上的值域,即可得到本題答案.【詳解】當(dāng)時,,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,故當(dāng)時,函數(shù)取得極大值,沒有極小值;函數(shù)的增區(qū)間為,減區(qū)間為,,當(dāng)時,,在上單調(diào)遞增,即函數(shù)的值域為;當(dāng)時,,在上單調(diào)遞減,即函數(shù)的值域為;當(dāng)時,易得時,,在上單調(diào)遞增,時,,在上單調(diào)遞減,故當(dāng)時,函數(shù)取得最大值,最小值為,中最小的,當(dāng)時,,最小值;當(dāng),,最小值;綜上,當(dāng)時,函數(shù)的值域為,當(dāng)時,函數(shù)的值域,當(dāng)時,函數(shù)的值域為,當(dāng)時,函數(shù)的值域為.【點睛】本題主要考查利用導(dǎo)數(shù)求單調(diào)區(qū)間和極值,以及利用導(dǎo)數(shù)研究含參函數(shù)在給定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年水性色漿項目建議書
- 2024招商合同范文集錦:影視基地招商引資合作協(xié)議3篇
- 2025年板材卷材:普中板項目發(fā)展計劃
- 信息技術(shù)業(yè)工傷處理流程
- 攝影設(shè)備架管租賃合同
- 城市地鐵軌道鋪設(shè)項目合同
- 購物袋廣告位租賃協(xié)議書
- 2025年煉油、化工生產(chǎn)專用設(shè)備項目合作計劃書
- 度假休閑酒店場地租賃合同范本
- 環(huán)?;顒訉ν饩栀浌芾磙k法
- 人教版地理七年級上冊期末測試題(4套含答案)
- 小學(xué)數(shù)學(xué)一年級上冊-期末測試卷(二)含答案-人教版
- 真空濾油機(jī)的原理及設(shè)計
- 登金陵鳳凰臺
- 房屋臨時建設(shè)申請書
- 二手車鑒定評估報告表
- 初中體育-50米跑教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 水利工程常用規(guī)范、標(biāo)準(zhǔn)匯總
- 現(xiàn)場生命急救知識與技能學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 醫(yī)院藥品評價與遴選量化評分表
- 大學(xué)美育知到章節(jié)答案智慧樹2023年延邊大學(xué)
評論
0/150
提交評論