湘西民族職業(yè)技術(shù)學院《VS設(shè)計》2023-2024學年第一學期期末試卷_第1頁
湘西民族職業(yè)技術(shù)學院《VS設(shè)計》2023-2024學年第一學期期末試卷_第2頁
湘西民族職業(yè)技術(shù)學院《VS設(shè)計》2023-2024學年第一學期期末試卷_第3頁
湘西民族職業(yè)技術(shù)學院《VS設(shè)計》2023-2024學年第一學期期末試卷_第4頁
湘西民族職業(yè)技術(shù)學院《VS設(shè)計》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁湘西民族職業(yè)技術(shù)學院

《VS設(shè)計》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分類是計算機視覺的基本任務(wù)之一。假設(shè)要對大量的動物圖像進行分類,將其分為貓、狗、兔子等類別。在進行圖像分類時,以下關(guān)于特征提取的描述,正確的是:()A.手工設(shè)計的特征,如顏色直方圖、紋理特征等,總是比自動學習的特征更有效B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學習到具有判別性的圖像特征,無需人工干預C.特征提取的好壞對圖像分類的結(jié)果影響不大,主要取決于分類器的性能D.為了提高分類準確率,應(yīng)該盡可能多地提取圖像的各種特征,而不考慮特征的冗余性2、在計算機視覺中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)的圖像。以下關(guān)于圖像檢索的說法,錯誤的是()A.圖像檢索可以基于圖像的內(nèi)容,如顏色、形狀和紋理等特征B.深度學習方法可以學習到更具語義的圖像表示,提高圖像檢索的準確性C.圖像檢索在電子商務(wù)、數(shù)字圖書館和圖像搜索引擎等領(lǐng)域有廣泛的應(yīng)用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫的組織和索引無關(guān)3、當利用計算機視覺進行圖像去模糊任務(wù),恢復清晰的圖像,以下哪種先驗知識或約束可能有助于解決這個問題?()A.自然圖像的梯度稀疏性B.圖像的低頻成分C.圖像的邊緣信息D.以上都是4、計算機視覺中的圖像修復旨在恢復圖像中缺失或損壞的部分。假設(shè)一張珍貴的老照片有部分區(qū)域損壞,需要進行修復以還原其完整的內(nèi)容。以下哪種圖像修復方法在處理這種情況時能夠生成更自然和逼真的結(jié)果?()A.基于擴散的圖像修復B.基于紋理合成的圖像修復C.基于深度學習的圖像修復D.基于樣例的圖像修復5、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴重噪聲污染的圖像中的噪聲。以下關(guān)于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會使圖像變得模糊B.均值濾波在去除噪聲的同時能夠很好地保留圖像的細節(jié)信息C.小波變換去噪方法計算復雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復出原始的無噪圖像6、計算機視覺在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助實現(xiàn)精準農(nóng)業(yè)。假設(shè)一個農(nóng)場需要通過計算機視覺監(jiān)測農(nóng)作物的生長狀況。以下關(guān)于計算機視覺在農(nóng)業(yè)中的描述,哪一項是錯誤的?()A.可以檢測農(nóng)作物的病蟲害,及時采取防治措施B.能夠評估農(nóng)作物的生長階段和成熟度,指導收獲時間C.計算機視覺在農(nóng)業(yè)中的應(yīng)用完全不受天氣和光照條件的影響D.可以通過無人機搭載攝像頭進行大面積的農(nóng)田監(jiān)測7、在計算機視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對模型的訓練和性能評估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準確的是()A.大規(guī)模、多樣化和標注準確的數(shù)據(jù)集有助于訓練出泛化能力強的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計算機視覺研究提供了重要的基準C.數(shù)據(jù)集的構(gòu)建需要耗費大量的時間和人力,但可以通過數(shù)據(jù)增強技術(shù)來減少對原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進行更新和擴展,能夠一直滿足研究的需求8、計算機視覺在人臉識別領(lǐng)域取得了顯著進展。假設(shè)要開發(fā)一個人臉識別系統(tǒng),以下關(guān)于人臉識別技術(shù)的描述,哪一項是不正確的?()A.可以通過提取人臉的幾何特征、紋理特征或深度學習特征進行識別B.人臉識別系統(tǒng)通常需要進行活體檢測,以防止使用照片或視頻等欺詐手段C.大規(guī)模的人臉數(shù)據(jù)集和深度學習模型的結(jié)合,大大提高了人臉識別的準確率D.人臉識別技術(shù)在任何光照條件、姿態(tài)變化和表情變化下都能準確識別,不受這些因素的影響9、計算機視覺在智能零售中的應(yīng)用可以改善購物體驗和提高運營效率。假設(shè)一個超市需要通過計算機視覺實現(xiàn)自動結(jié)賬和庫存管理。以下關(guān)于計算機視覺在智能零售中的描述,哪一項是不準確的?()A.可以通過商品識別技術(shù)自動識別顧客購買的商品,實現(xiàn)快速結(jié)賬B.能夠?qū)崟r監(jiān)測貨架上商品的庫存水平,及時提醒補貨C.計算機視覺系統(tǒng)能夠準確識別所有商品的包裝和標簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營銷策略提供數(shù)據(jù)支持10、在計算機視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關(guān)于特征提取方法的描述,哪一項是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對圖像的旋轉(zhuǎn)、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測C.深度學習中的自動特征提取,例如通過卷積神經(jīng)網(wǎng)絡(luò)學習到的特征,比手工設(shè)計的特征更具有代表性和判別力D.特征提取的結(jié)果對后續(xù)的圖像處理任務(wù)影響不大,不同的特征提取方法可以得到相似的處理效果11、在計算機視覺的目標計數(shù)任務(wù)中,統(tǒng)計圖像或視頻中目標的數(shù)量。假設(shè)要統(tǒng)計一個果園中蘋果的數(shù)量,以下關(guān)于目標計數(shù)方法的描述,哪一項是不正確的?()A.可以基于圖像分割和對象識別的方法,先分割出每個蘋果,然后進行計數(shù)B.利用深度學習中的回歸模型直接預測蘋果的數(shù)量C.目標計數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準確計數(shù)D.結(jié)合多視角圖像或視頻序列可以提高目標計數(shù)的準確性12、在計算機視覺的目標跟蹤任務(wù)中,需要持續(xù)跟蹤一個或多個運動目標。假設(shè)要跟蹤一個在操場上跑步的人。以下關(guān)于目標跟蹤算法的描述,哪一項是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標的相似特征來實現(xiàn)跟蹤B.深度學習中的相關(guān)濾波算法能夠快速準確地跟蹤目標,適應(yīng)目標的外觀變化C.目標跟蹤算法能夠在目標被遮擋或短暫消失后,仍然準確地恢復跟蹤D.無論目標的運動速度和軌跡如何復雜,目標跟蹤算法都能完美地跟蹤13、在計算機視覺的文本檢測和識別任務(wù)中,假設(shè)要從一張圖片中提取并識別其中的文字信息。以下關(guān)于文本檢測和識別的描述,哪一項是不正確的?()A.可以先通過文本檢測算法定位圖片中的文本區(qū)域,然后進行識別B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)在文本識別中表現(xiàn)出色,能夠準確識別各種字體和風格的文字C.文本檢測和識別對于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對,沒有任何困難D.可以結(jié)合光學字符識別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本14、在計算機視覺的圖像檢索任務(wù)中,假設(shè)要從一個大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像。這些圖像可能在內(nèi)容、風格和主題上存在差異。為了提高檢索的效率和準確性,以下哪種方法通常被采用?()A.基于全局特征的圖像表示和相似性度量B.只對圖像的標簽進行文本匹配,忽略圖像內(nèi)容C.隨機選擇數(shù)據(jù)庫中的圖像作為檢索結(jié)果D.不進行任何預處理,直接在原始圖像上進行檢索15、在計算機視覺的場景理解任務(wù)中,需要對整個圖像場景進行分析和解釋。假設(shè)我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關(guān)系。以下哪種方法能夠提供更全面和深入的場景理解?()A.基于對象檢測和分類的方法B.基于語義分割和圖模型的方法C.基于深度學習的場景解析網(wǎng)絡(luò)D.基于特征匹配和聚類的方法二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在海洋溢油監(jiān)測中的作用。2、(本題5分)簡述計算機視覺中圖像預處理的常見方法及作用。3、(本題5分)說明計算機視覺在知識產(chǎn)權(quán)服務(wù)中的綜合應(yīng)用。4、(本題5分)描述計算機視覺在海洋軍事中的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)基于深度學習,實現(xiàn)對跳水比賽中運動員入水姿勢的檢測。2、(本題5分)使用目標跟蹤算法,跟蹤魔術(shù)表演中道具的變化。3、(本題5分)使用深度學習模型,對歷史文物圖像進行年代和風格的鑒定。4、(本題5分)基于計算機視覺的智能工廠物料搬運系統(tǒng),實現(xiàn)物料的自動識別和搬運。5、(本題5分)設(shè)計一個基于計算機視覺的指紋識別系統(tǒng)。四、分析題(本大題共4個小題,共40分)1、(本題10分)解讀某體育賽事的官方攝影作品設(shè)計,分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論