版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北省公安縣第三中學高三適應性調研考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中各項系數的和為2,則該展開式中常數項為A.-40 B.-20 C.20 D.402.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.3.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.4.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.5.()A. B. C. D.6.若函數的圖象向右平移個單位長度得到函數的圖象,若函數在區(qū)間上單調遞增,則的最大值為().A. B. C. D.7.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.8.已知函數,則的值等于()A.2018 B.1009 C.1010 D.20209.如圖,設為內一點,且,則與的面積之比為A. B.C. D.10.已知數列為等差數列,為其前項和,,則()A.7 B.14 C.28 D.8411.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.12.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.14.已知函數.若在區(qū)間上恒成立.則實數的取值范圍是__________.15.已知,,且,則最小值為__________.16.已知向量=(-4,3),=(6,m),且,則m=__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求證:當時,;(2)若對任意存在和使成立,求實數的最小值.18.(12分)在中,角,,所對的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.19.(12分)在直角坐標系中,直線的參數方程是為參數),曲線的參數方程是為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.20.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.21.(12分)在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為:,曲線的參數方程為其中,為參數,為常數.(1)寫出與的直角坐標方程;(2)在什么范圍內取值時,與有交點.22.(10分)已知函數,將的圖象向左移個單位,得到函數的圖象.(1)若,求的單調區(qū)間;(2)若,的一條對稱軸是,求在的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數項=80,由5-2r=-1得r=3,對應的常數項=-40,故所求的常數項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數項==-40+80=402、C【解析】
先解不等式,可得出,求出函數的值域,由題意可知,不等式在定義域上恒成立,可得出關于的不等式,即可解得實數的取值范圍.【詳解】,先解不等式.①當時,由,得,解得,此時;②當時,由,得.所以,不等式的解集為.下面來求函數的值域.當時,,則,此時;當時,,此時.綜上所述,函數的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數不等式恒成立求參數,同時也考查了分段函數基本性質的應用,考查分類討論思想的應用,屬于中等題.3、C【解析】
設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結論.【詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.4、D【解析】
先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。5、D【解析】
利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.6、C【解析】
由題意利用函數的圖象變換規(guī)律,正弦函數的單調性,求出的最大值.【詳解】解:把函數的圖象向右平移個單位長度得到函數的圖象,若函數在區(qū)間,上單調遞增,在區(qū)間,上,,,則當最大時,,求得,故選:C.【點睛】本題主要考查函數的圖象變換規(guī)律,正弦函數的單調性,屬于基礎題.7、B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.8、C【解析】
首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.9、A【解析】
作交于點,根據向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.10、D【解析】
利用等差數列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.11、C【解析】
將圓,化為標準方程為,求得圓心為.根據圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質,還考查了運算求解的能力,屬于中檔題.12、D【解析】
利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據題意,由雙曲線的漸近線方程可得,即a=2b,進而由雙曲線的幾何性質可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點睛】本題考查雙曲線的幾何性質,關鍵是分析a、b之間的關系,屬于基礎題.14、【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區(qū)間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數的綜合問題,屬于基礎題.15、【解析】
首先整理所給的代數式,然后結合均值不等式的結論即可求得其最小值.【詳解】,結合可知原式,且,當且僅當時等號成立.即最小值為.【點睛】在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現錯誤.16、8.【解析】
利用轉化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標運算、平面向量的數量積、平面向量的垂直以及轉化與化歸思想的應用.屬于容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)不等式等價于,設,利用導數可證恒成立,從而原不等式成立.(2)由題設條件可得在上有兩個不同零點,且,利用導數討論的單調性后可得其最小值,結合前述的集合的包含關系可得的取值范圍.【詳解】(1)設,則,當時,由,所以在上是減函數,所以,故.因為,所以,所以當時,.(2)由(1)當時,;任意,存在和使成立,所以在上有兩個不同零點,且,(1)當時,在上為減函數,不合題意;(2)當時,,由題意知在上不單調,所以,即,當時,,時,,所以在上遞減,在上遞增,所以,解得,因為,所以成立,下面證明存在,使得,取,先證明,即證,令,則在時恒成立,所以成立,因為,所以時命題成立.因為,所以.故實數的最小值為.【點睛】本題考查導數在不等式恒成立、等式能成立中的應用,前者注意將欲證不等式合理變形,轉化為容易證明的新不等式,后者需根據等式能成立的特點確定出函數應該具有的性質,再利用導數研究該性質,本題屬于難題.18、(1);(2)【解析】
(1)利用正弦定理邊化角,結合兩角和差正弦公式可整理求得,進而求得和,代入求得結果;(2)利用正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據正弦型函數值域的求解方法,結合的范圍可求得結果.【詳解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范圍為【點睛】本題考查解三角形知識的相關應用,涉及到正弦定理邊化角的應用、兩角和差正弦公式和輔助角公式的應用、與三角函數值域有關的取值范圍的求解問題;求解取值范圍的關鍵是能夠利用正弦定理將邊長的問題轉化為三角函數的問題,進而利用正弦型函數值域的求解方法求得結果.19、(1),;(2).【解析】
(1)先把直線和曲線的參數方程化成普通方程,再化成極坐標方程;(2)聯立極坐標方程,根據極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數方程是為參數),消去參數得直角坐標方程為:.轉換為極坐標方程為:,即.曲線的參數方程是(為參數),轉換為直角坐標方程為:,化為一般式得化為極坐標方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【點睛】本題主要考查參數方程與普通方程的互化、直角坐標方程與極坐標方程的互化,熟記公式即可,屬于常考題型.20、(1)見解析(2)【解析】
(1)設的中點為,連接.由展開圖可知,,.為的中點,則有,根據勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時,即是的中點建立空間直角坐標系,求出與平面的法向量利用公式即可求得結果.【詳解】(1)設AC的中點為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點,,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當OM最短時,即M是PA的中點時,最大.由平面ABC,,,,于是以OC,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標系,則,,設平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則.直線MA與平面MBC所成角的正弦值為.【點睛】本題考查面面垂直的證明,考查線面成角問題,借助空間向量是解決線面成角問題的關鍵,難度一般.21、(1),.(2)【解析】
(1)利用,代入可求;消參可得直角坐標方程.(2)將的參數方程代入的直角坐標方程,與有交點,可得,解不等式即可求解.【詳解】(1)(2)將的參數方程代入的直角坐標方程得:與有交點,即【點睛】本題考查了極坐標方程與普通方程的轉化、參數方程與普通方程的轉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版城市綜合體成立出資及商業(yè)運營管理合同3篇
- 物流倉儲設備操作與維修標準
- 保健師招聘紀念館
- 車站周邊交通擁堵治理
- 養(yǎng)殖場環(huán)保改造施工合同
- 商業(yè)店鋪解除租賃協議模板
- 體育場館安全標準化規(guī)定
- 社區(qū)服務改進合理化建議管理辦法
- 通信基站安裝合同管理臺賬
- 野外考古挖掘車司機管理規(guī)定
- DL-T 1476-2023 電力安全工器具預防性試驗規(guī)程
- 網絡畫板智慧樹知到期末考試答案章節(jié)答案2024年成都師范學院
- 心理學基礎智慧樹知到期末考試答案章節(jié)答案2024年杭州師范大學
- 英山縣南河鎮(zhèn)黑石寨飾面用花崗巖礦礦產資源開發(fā)利用與生態(tài)復綠方案
- 2023年印尼法律須知
- 20S805-1 雨水調蓄設施-鋼筋混凝土雨水調蓄池
- OptiXOSN3500產品培訓課件
- 鋼筋計量-柱鋼筋計量之框架柱基礎插筋
- 肌間靜脈血栓護理問題
- 合伙人協議書跨境合作
- 崗位工作指導手冊
評論
0/150
提交評論