2025屆山東省泰安市高考仿真模擬數(shù)學試卷含解析_第1頁
2025屆山東省泰安市高考仿真模擬數(shù)學試卷含解析_第2頁
2025屆山東省泰安市高考仿真模擬數(shù)學試卷含解析_第3頁
2025屆山東省泰安市高考仿真模擬數(shù)學試卷含解析_第4頁
2025屆山東省泰安市高考仿真模擬數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省泰安市高考仿真模擬數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.明代數(shù)學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.2.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.3.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.4.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達式為()A. B.C. D.5.將函數(shù)f(x)=sin3x-cos3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關于g(x)的結論:①它的圖象關于直線x=對稱;②它的最小正周期為;③它的圖象關于點(,1)對稱;④它在[]上單調(diào)遞增.其中所有正確結論的編號是()A.①② B.②③ C.①②④ D.②③④6.已知是等差數(shù)列的前項和,,,則()A.85 B. C.35 D.7.已知函數(shù)(,,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.639.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.10.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.11.下列幾何體的三視圖中,恰好有兩個視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長寬高互不相等的長方體12.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,二、填空題:本題共4小題,每小題5分,共20分。13.某高校組織學生辯論賽,六位評委為選手成績打出分數(shù)的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為______.14.已知是偶函數(shù),則的最小值為___________.15.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結果為的式子的序號是_____.16.如圖,已知扇形的半徑為1,面積為,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.(1)求橢圓的標準方程;(2)設、是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.18.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學期望.19.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望.20.(12分)已知橢圓的離心率為,且過點.(1)求橢圓C的標準方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.21.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.22.(10分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.2、C【解析】

將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標準方程和離心率的概念,屬于基礎題.3、C【解析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.4、B【解析】

由圖象的頂點坐標求出,由周期求出,通過圖象經(jīng)過點,求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數(shù)表達式為.故選:B.【點睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結合思想,屬于基礎題.5、B【解析】

根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對稱性、單調(diào)區(qū)間等相關性質(zhì)求解即可.【詳解】因為f(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對稱軸,故①錯誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數(shù)g(x)的圖象關于點(,1)對稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯誤;故選:B【點睛】本題考查圖象的平移變換和正弦函數(shù)的對稱性、單調(diào)性和最小正周期等性質(zhì);考查運算求解能力和整體代換思想;熟練掌握正弦函數(shù)的對稱性、單調(diào)性和最小正周期等相關性質(zhì)是求解本題的關鍵;屬于中檔題、??碱}型6、B【解析】

將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎題.7、B【解析】

先根據(jù)圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設,根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應用,充分條件,必要條件的定義的應用,意在考查學生的數(shù)學運算能力和邏輯推理能力,屬于中檔題.8、B【解析】

根據(jù)程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.9、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.10、A【解析】

根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.11、C【解析】

根據(jù)基本幾何體的三視圖確定.【詳解】正方體的三個三視圖都是相等的正方形,球的三個三視圖都是相等的圓,圓錐的三個三視圖有一個是圓,另外兩個是全等的等腰三角形,長寬高互不相等的長方體的三視圖是三個兩兩不全等的矩形.故選:C.【點睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關鍵.12、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標函數(shù)的最小值為:4目標函數(shù)的范圍是[4,+∞).故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結果.【詳解】剩下的四個數(shù)為83,85,87,95,且這四個數(shù)的平均數(shù),這四個數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.【點睛】本題主要考查莖葉圖的識別和統(tǒng)計量的計算,側(cè)重考查數(shù)據(jù)分析和數(shù)學運算的核心素養(yǎng).14、2【解析】

由偶函數(shù)性質(zhì)可得,解得,再結合基本不等式即可求解【詳解】令得,所以,當且僅當時取等號.故答案為:2【點睛】考查函數(shù)的奇偶性、基本不等式,屬于基礎題15、①②③【解析】

由已知分別結合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.16、【解析】

根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【詳解】設角,則,,所以在等腰三角形中,,則.故答案為:.【點睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后利用條件,結合橢圓的對稱性得到點的坐標,然后將點的坐標代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件得到直線與的斜率直線的關系(互為相反數(shù)),然后設直線的方程為,將此直線的方程與橢圓方程聯(lián)立,求出點的坐標,注意到直線與的斜率之間的關系得到點的坐標,最后再用斜率公式證明直線的斜率為定值.(1),,又是等腰三角形,所以,把點代入橢圓方程,求得,所以橢圓方程為;(2)由題易得直線、斜率均存在,又,所以,設直線代入橢圓方程,化簡得,其一解為,另一解為,可求,用代入得,,為定值.考點:1.橢圓的方程;2.直線與橢圓的位置關系;3.兩點間連線的斜率18、(1)(2)詳見解析【解析】

(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨立事件概率計算公式,計算出分布列并求得數(shù)學期望.【詳解】(1)由題意,當家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,所以要想領取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【點睛】本小題考查概率,分布列,數(shù)學期望等概率與統(tǒng)計的基礎知識;考查運算求解能力,推理論證能力,數(shù)據(jù)處理,應用意識.19、(1)(2)見解析,【解析】

(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調(diào)查的12名學生中隨機抽取2人,基本事件總數(shù)為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數(shù)學期望.【詳解】(1)由題設易得,問卷調(diào)查從四個小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問卷調(diào)查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調(diào)查的12名學生中,來自甲、丙兩小組的學生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為【點睛】此題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.20、(1)(2)點在以為直徑的圓上【解析】

(1)根據(jù)題意列出關于,,的方程組,解出,,的值,即可得到橢圓的標準方程;(2)設點,,則,,求出直線的方程,進而求出點的坐標,再利用中點坐標公式得到點的坐標,下面結合點在橢圓上證出,所以點在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標準方程為:.(2)設點,,則,,直線的斜率為,直線的方程為:,令得,,點的坐標為,,點的坐標為,,,,又點,在橢圓上,,,,點在以為直徑的圓上.【點睛】本題主要考查了橢圓方程,考查了中點坐標公式,以及平面向量的基本知識,屬于中檔題.21、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)利用三角形面積公式以及并結合正弦定理,可得結果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點睛】本題考查三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論