煙臺幼兒師范高等??茖W(xué)?!毒幣旁O(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
煙臺幼兒師范高等??茖W(xué)?!毒幣旁O(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
煙臺幼兒師范高等專科學(xué)?!毒幣旁O(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
煙臺幼兒師范高等專科學(xué)?!毒幣旁O(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
煙臺幼兒師范高等??茖W(xué)?!毒幣旁O(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁煙臺幼兒師范高等??茖W(xué)校

《編排設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺中,目標(biāo)檢測是一項關(guān)鍵任務(wù)。假設(shè)要開發(fā)一個能夠在復(fù)雜的城市交通場景中準(zhǔn)確檢測出各種車輛類型的系統(tǒng),需要考慮車輛的不同尺寸、形狀和姿態(tài),以及光照、陰影和遮擋等因素的影響。以下哪種目標(biāo)檢測算法在處理這種復(fù)雜場景時具有較好的性能和魯棒性?()A.R-CNNB.FastR-CNNC.FasterR-CNND.YOLO2、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和識別。以下關(guān)于動作識別的描述,不準(zhǔn)確的是()A.動作識別需要分析視頻中的時空特征來理解動作的模式和類別B.雙流卷積網(wǎng)絡(luò)在動作識別任務(wù)中被廣泛應(yīng)用,分別處理空間和時間信息C.動作識別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價值D.動作識別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識別各種復(fù)雜和細微的動作3、假設(shè)要開發(fā)一個能夠在低光照條件下清晰拍攝并處理圖像的計算機視覺系統(tǒng),以下哪種圖像增強方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗去霧D.以上都是4、在計算機視覺的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會對跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢,提高跟蹤性能5、計算機視覺中的視頻理解不僅包括對單個幀的分析,還需要考慮幀之間的關(guān)系。假設(shè)我們要理解一個電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時空動態(tài)信息和語義信息?()A.基于幀級特征和分類器的方法B.基于深度學(xué)習(xí)的視頻理解模型,結(jié)合注意力機制C.基于光流和運動軌跡的方法D.基于音頻和視頻融合的方法6、計算機視覺在自動駕駛領(lǐng)域有廣泛的應(yīng)用。假設(shè)一輛自動駕駛汽車需要識別道路上的交通標(biāo)志,以下關(guān)于自動駕駛中的計算機視覺應(yīng)用的描述,哪一項是不正確的?()A.多攝像頭融合可以提供更全面的道路信息,提高交通標(biāo)志識別的準(zhǔn)確性B.深度學(xué)習(xí)模型可以實時處理攝像頭采集的圖像,快速準(zhǔn)確地識別交通標(biāo)志C.除了交通標(biāo)志識別,計算機視覺還可以用于車道檢測、行人檢測和障礙物檢測等任務(wù)D.自動駕駛中的計算機視覺系統(tǒng)完全不需要其他傳感器(如雷達、激光雷達)的輔助,僅依靠圖像信息就能實現(xiàn)安全可靠的駕駛7、在計算機視覺的圖像語義分割任務(wù)中,假設(shè)要處理具有多尺度特征的圖像,例如同時包含大物體和小物體的場景。以下關(guān)于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡(luò)可以應(yīng)對多尺度問題,通過調(diào)整網(wǎng)絡(luò)參數(shù)即可B.采用多尺度輸入圖像,分別進行處理后再融合結(jié)果,能夠有效解決多尺度問題,但計算量大C.空洞卷積在處理多尺度特征時會引入大量的噪聲,降低分割精度D.圖像語義分割中多尺度問題無法解決,只能盡量避免處理這類圖像8、在進行計算機視覺的三維重建時,需要從多個視角的圖像中恢復(fù)物體的三維形狀和結(jié)構(gòu)。假設(shè)要對一個復(fù)雜的古建筑進行三維重建,圖像采集存在視角偏差和部分遮擋。以下哪種三維重建方法在處理這種不完整和有噪聲的數(shù)據(jù)時效果較好?()A.基于立體視覺的重建B.基于運動恢復(fù)結(jié)構(gòu)(SfM)的重建C.基于激光掃描的重建D.基于深度學(xué)習(xí)的重建9、在計算機視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進行B.深度學(xué)習(xí)方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學(xué)影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準(zhǔn)確地將圖像中的所有物體都分割出來10、計算機視覺中的深度估計是確定場景中物體距離相機的遠近。假設(shè)要為機器人導(dǎo)航提供深度信息,以下關(guān)于深度估計方法的精度要求,哪一項是最為關(guān)鍵的?()A.能夠區(qū)分不同物體的大致距離范圍即可B.提供精確到毫米級別的深度信息,確保機器人安全導(dǎo)航C.深度估計的精度對機器人導(dǎo)航影響不大,可以忽略D.精度要求取決于機器人的運動速度,速度越快要求精度越低11、在計算機視覺的圖像配準(zhǔn)任務(wù)中,將不同視角或時間拍攝的圖像進行對齊,以下哪種變換模型可能適用于具有較大形變的圖像配準(zhǔn)?()A.剛性變換B.仿射變換C.投影變換D.非線性變換12、計算機視覺中的表情識別用于分析人臉的表情狀態(tài)。假設(shè)要在一個在線教育平臺中檢測學(xué)生的學(xué)習(xí)狀態(tài)。以下關(guān)于表情識別的描述,哪一項是不正確的?()A.可以通過提取面部肌肉的運動特征來判斷表情B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)表情的特征表示C.表情識別能夠準(zhǔn)確區(qū)分細微的表情變化,如困惑和專注D.表情識別不受面部遮擋和光照變化的影響,始終能夠準(zhǔn)確判斷13、計算機視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關(guān)于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗知識進行關(guān)聯(lián)和解釋B.知識圖譜可以為語義理解提供豐富的語義信息和關(guān)系C.語義理解在圖像描述生成、問答系統(tǒng)等任務(wù)中發(fā)揮著重要作用D.語義理解已經(jīng)達到了非常完美的程度,能夠準(zhǔn)確理解任何復(fù)雜的圖像或視頻內(nèi)容14、對于圖像的邊緣檢測任務(wù),假設(shè)要準(zhǔn)確檢測出圖像中物體的邊緣,同時抑制噪聲的影響。以下哪種邊緣檢測算子可能表現(xiàn)更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.隨機生成邊緣檢測結(jié)果15、當(dāng)進行圖像的去霧處理時,假設(shè)要去除圖像中由于霧氣導(dǎo)致的模糊和低對比度。以下哪種方法可能更有效?()A.基于物理模型的去霧方法,估計大氣光和透射率B.對圖像進行簡單的對比度增強C.不進行去霧處理,保留有霧的效果D.隨機調(diào)整圖像的亮度和飽和度16、計算機視覺在文物保護和修復(fù)中具有潛在應(yīng)用。假設(shè)要對一件受損的古代書畫進行數(shù)字化修復(fù),以下關(guān)于計算機視覺在文物保護中的作用的描述,哪一項是不正確的?()A.可以通過圖像增強和去噪技術(shù)改善書畫的視覺效果B.利用圖像匹配和拼接技術(shù)還原殘缺的部分C.計算機視覺技術(shù)能夠完全恢復(fù)文物的原始狀態(tài),使其與未受損時一模一樣D.為文物修復(fù)專家提供輔助決策和參考依據(jù)17、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和理解。假設(shè)要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風(fēng)格的變化。以下哪種動作識別方法在處理這種復(fù)雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學(xué)習(xí)的時空卷積網(wǎng)絡(luò)D.基于隱馬爾可夫模型的動作識別18、在計算機視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對模型的訓(xùn)練和性能評估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計算機視覺研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費大量的時間和人力,但可以通過數(shù)據(jù)增強技術(shù)來減少對原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進行更新和擴展,能夠一直滿足研究的需求19、目標(biāo)檢測是計算機視覺中的常見任務(wù),例如在監(jiān)控視頻中檢測行人或車輛。假設(shè)我們要開發(fā)一個目標(biāo)檢測系統(tǒng),以下關(guān)于目標(biāo)檢測算法的描述,哪一項是不正確的?()A.基于區(qū)域建議的方法,如R-CNN系列算法,通過生成候選區(qū)域并對其進行分類和定位來實現(xiàn)目標(biāo)檢測B.一階段目標(biāo)檢測算法,如YOLO和SSD,直接在圖像上進行目標(biāo)的分類和定位,速度相對較快C.目標(biāo)檢測算法的性能通常用準(zhǔn)確率、召回率和平均精度均值(mAP)等指標(biāo)來評估D.目標(biāo)檢測算法的精度和速度是相互獨立的,提高精度不會影響速度,反之亦然20、計算機視覺中的姿態(tài)估計是確定物體在三維空間中的位置和方向。假設(shè)要估計一個機器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,哪一項是不正確的?()A.基于視覺的姿態(tài)估計可以通過分析物體在圖像中的特征點來計算其姿態(tài)B.可以結(jié)合多個攝像頭的圖像信息,提高姿態(tài)估計的精度和魯棒性C.姿態(tài)估計通常需要先對物體進行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計的結(jié)果總是非常準(zhǔn)確,不受圖像噪聲、遮擋和物體形狀變化的影響二、簡答題(本大題共3個小題,共15分)1、(本題5分)計算機視覺中如何進行木材加工中的缺陷檢測?2、(本題5分)簡述計算機視覺在餐飲行業(yè)中的食品質(zhì)量檢測和服務(wù)優(yōu)化。3、(本題5分)說明計算機視覺在智能灌溉中的應(yīng)用。三、分析題(本大題共5個小題,共25分)1、(本題5分)以一個電子產(chǎn)品品牌的電子產(chǎn)品配件包裝設(shè)計為例,分析其如何運用視覺元素展示配件的特點和與主產(chǎn)品的搭配性。2、(本題5分)研究某電商品牌的社交媒體廣告設(shè)計,探討其如何通過視覺內(nèi)容吸引用戶點擊和購買產(chǎn)品。3、(本題5分)某運動品牌的專賣店裝修設(shè)計充滿活力,提升品牌形象。請剖析專賣店在空間利用、貨架陳列、品牌元素展示上的創(chuàng)新,以及如何吸引消費者進店購買。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論