版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湘贛粵名校2025屆高考?jí)狠S卷數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.祖暅原理:“冪勢(shì)既同,則積不容異”.意思是說(shuō):兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個(gè)同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.3.已知點(diǎn)在雙曲線上,則該雙曲線的離心率為()A. B. C. D.4.已知函數(shù),若所有點(diǎn),所構(gòu)成的平面區(qū)域面積為,則()A. B. C.1 D.5.已知復(fù)數(shù)滿(mǎn)足,則的值為()A. B. C. D.26.已知為拋物線的焦點(diǎn),點(diǎn)在上,若直線與的另一個(gè)交點(diǎn)為,則()A. B. C. D.7.如圖,在中,,是上一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.8.某校為提高新入聘教師的教學(xué)水平,實(shí)行“老帶新”的師徒結(jié)對(duì)指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對(duì)方式共有()種.A.360 B.240 C.150 D.1209.已知函數(shù),其中,記函數(shù)滿(mǎn)足條件:為事件,則事件發(fā)生的概率為A. B.C. D.10.若,則,,,的大小關(guān)系為()A. B.C. D.11.曲線在點(diǎn)處的切線方程為,則()A. B. C.4 D.812.設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面,則的一個(gè)充分條件是()A.且 B.且 C.且 D.且二、填空題:本題共4小題,每小題5分,共20分。13.如圖,直線平面,垂足為,三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_(kāi)______,點(diǎn)到直線的距離的最大值為_(kāi)______.14.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個(gè)三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點(diǎn),到直線,的距離分別為8百米、1百米,則觀察點(diǎn)到點(diǎn)、距離之和的最小值為_(kāi)_____________百米.15.已知向量,,若向量與向量平行,則實(shí)數(shù)___________.16.函數(shù)的圖象向右平移個(gè)單位后,與函數(shù)的圖象重合,則_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓:的離心率為,左、右頂點(diǎn)分別為、,過(guò)左焦點(diǎn)的直線交橢圓于、兩點(diǎn)(異于、兩點(diǎn)),當(dāng)直線垂直于軸時(shí),四邊形的面積為1.(1)求橢圓的方程;(2)設(shè)直線、的交點(diǎn)為;試問(wèn)的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.18.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)如果對(duì)所有的≥0,都有≤,求的最小值;(Ⅲ)已知數(shù)列中,,且,若數(shù)列的前n項(xiàng)和為,求證:.19.(12分)已知橢圓與拋物線有共同的焦點(diǎn),且離心率為,設(shè)分別是為橢圓的上下頂點(diǎn)(1)求橢圓的方程;(2)過(guò)點(diǎn)與軸不垂直的直線與橢圓交于不同的兩點(diǎn),當(dāng)弦的中點(diǎn)落在四邊形內(nèi)(含邊界)時(shí),求直線的斜率的取值范圍.20.(12分)設(shè)的內(nèi)角、、的對(duì)邊長(zhǎng)分別為、、.設(shè)為的面積,滿(mǎn)足.(1)求;(2)若,求的最大值.21.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.22.(10分)如圖,在中,角的對(duì)邊分別為,且滿(mǎn)足,線段的中點(diǎn)為.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個(gè)正放的正四面體,一個(gè)倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.2、D【解析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.3、C【解析】
將點(diǎn)A坐標(biāo)代入雙曲線方程即可求出雙曲線的實(shí)軸長(zhǎng)和虛軸長(zhǎng),進(jìn)而求得離心率.【詳解】將,代入方程得,而雙曲線的半實(shí)軸,所以,得離心率,故選C.【點(diǎn)睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.4、D【解析】
依題意,可得,在上單調(diào)遞增,于是可得在上的值域?yàn)?,繼而可得,解之即可.【詳解】解:,因?yàn)椋?,所以,在上單調(diào)遞增,則在上的值域?yàn)椋驗(yàn)樗悬c(diǎn)所構(gòu)成的平面區(qū)域面積為,所以,解得,故選:D.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關(guān)鍵,考查運(yùn)算能力,屬于中檔題.5、C【解析】
由復(fù)數(shù)的除法運(yùn)算整理已知求得復(fù)數(shù)z,進(jìn)而求得其模.【詳解】因?yàn)?,所以故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算與求復(fù)數(shù)的模,屬于基礎(chǔ)題.6、C【解析】
求得點(diǎn)坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點(diǎn)坐標(biāo),進(jìn)而求得【詳解】拋物線焦點(diǎn)為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點(diǎn)睛】本小題主要考查拋物線的弦長(zhǎng)的求法,屬于基礎(chǔ)題.7、C【解析】
由題意,可根據(jù)向量運(yùn)算法則得到(1﹣m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點(diǎn)睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.8、C【解析】
可分成兩類(lèi),一類(lèi)是3個(gè)新教師與一個(gè)老教師結(jié)對(duì),其他一新一老結(jié)對(duì),第二類(lèi)兩個(gè)老教師各帶兩個(gè)新教師,一個(gè)老教師帶一個(gè)新教師,分別計(jì)算后相加即可.【詳解】分成兩類(lèi),一類(lèi)是3個(gè)新教師與同一個(gè)老教師結(jié)對(duì),有種結(jié)對(duì)結(jié)對(duì)方式,第二類(lèi)兩個(gè)老教師各帶兩個(gè)新教師,有.∴共有結(jié)對(duì)方式60+90=150種.故選:C.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對(duì)這個(gè)事情,是先分類(lèi)還是先分步,確定方法后再計(jì)數(shù).本題中有一個(gè)平均分組問(wèn)題.計(jì)數(shù)時(shí)容易出錯(cuò).兩組中每組中人數(shù)都是2,因此方法數(shù)為.9、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.10、D【解析】因?yàn)椋?,因?yàn)椋?,所?.綜上;故選D.11、B【解析】
求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過(guò)點(diǎn)求出即可.【詳解】因?yàn)椋?,故,解得,又切線過(guò)點(diǎn),所以,解得,所以,故選:B【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.12、B【解析】由且可得,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過(guò)和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長(zhǎng)為,則中線長(zhǎng)為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過(guò)和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,以下求過(guò)和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過(guò)做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【點(diǎn)睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.14、【解析】
建系,將直線用方程表示出來(lái),再用參數(shù)表示出線段的長(zhǎng)度,最后利用導(dǎo)數(shù)來(lái)求函數(shù)最小值.【詳解】以為原點(diǎn),所在直線分別作為軸,建立平面直角坐標(biāo)系,則.設(shè)直線,即,則,所以,所以,,則,則,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),,則單調(diào)遞增,所以當(dāng)時(shí),最短,此時(shí).故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的實(shí)際應(yīng)用,屬于中檔題.15、【解析】
由題可得,因?yàn)橄蛄颗c向量平行,所以,解得.16、【解析】
根據(jù)函數(shù)圖象的平移變換公式求得變換后的函數(shù)解析式,再利用誘導(dǎo)公式求得滿(mǎn)足的方程,結(jié)合題中的范圍即可求解.【詳解】由函數(shù)圖象的平移變換公式可得,函數(shù)的圖象向右平移個(gè)單位后,得到的函數(shù)解析式為,因?yàn)楹瘮?shù),所以函數(shù)與函數(shù)的圖象重合,所以,即,因?yàn)?所以.故答案為:【點(diǎn)睛】本題考查函數(shù)圖象的平移變換和三角函數(shù)的誘導(dǎo)公式;誘導(dǎo)公式的靈活運(yùn)用是求解本題的關(guān)鍵;屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)是為定值,的橫坐標(biāo)為定值【解析】
(1)根據(jù)“直線垂直于軸時(shí),四邊形的面積為1”列方程,由此求得,結(jié)合橢圓離心率以及,求得,由此求得橢圓方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡(jiǎn)后寫(xiě)出根與系數(shù)關(guān)系.求得直線的方程,并求得兩直線交點(diǎn)的橫坐標(biāo),結(jié)合根與系數(shù)關(guān)系進(jìn)行化簡(jiǎn),求得的橫坐標(biāo)為定值.【詳解】(1)依題意可知,解得,即;而,即,結(jié)合解得,,因此橢圓方程為(2)由題意得,左焦點(diǎn),設(shè)直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯(lián)系方程,解得,又因?yàn)椋裕缘臋M坐標(biāo)為定值.【點(diǎn)睛】本小題主要考查根據(jù)橢圓離心率求橢圓方程,考查直線和橢圓的位置關(guān)系,考查直線和直線交點(diǎn)坐標(biāo)的求法,考查運(yùn)算求解能力,屬于中檔題.18、(Ⅰ)函數(shù)在上單調(diào)遞減,在單調(diào)遞增;(Ⅱ);(Ⅲ)證明見(jiàn)解析.【解析】
(Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過(guò)解關(guān)于導(dǎo)數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)g(x)=f(x)﹣ax,先求出函數(shù)g(x)的導(dǎo)數(shù),通過(guò)討論a的范圍,得到函數(shù)的單調(diào)性,從而求出a的最小值;(Ⅲ)先求出數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列,,,問(wèn)題轉(zhuǎn)化為證明:,通過(guò)換元法或數(shù)學(xué)歸納法進(jìn)行證明即可.【詳解】解:(Ⅰ)f(x)的定義域?yàn)椋ī?,+∞),,當(dāng)時(shí),f′(x)<2,當(dāng)時(shí),f′(x)>2,所以函數(shù)f(x)在上單調(diào)遞減,在單調(diào)遞增.(Ⅱ)設(shè),則,因?yàn)閤≥2,故,(ⅰ)當(dāng)a≥1時(shí),1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調(diào)遞減,而g(2)=2,所以對(duì)所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當(dāng)1<a<1時(shí),2<1﹣a<1,若,則g′(x)>2,g(x)單調(diào)遞增,而g(2)=2,所以當(dāng)時(shí),g(x)>2,即f(x)>ax;(ⅲ)當(dāng)a≤1時(shí),1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調(diào)遞增,而g(2)=2,所以對(duì)所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列,故,,,?,由(Ⅱ)知a=1時(shí),,x>2,即,x>2.法一:令,得,即因?yàn)?,所以,故.法二?下面用數(shù)學(xué)歸納法證明.(1)當(dāng)n=1時(shí),令x=1代入,即得,不等式成立(1)假設(shè)n=k(k∈N*,k≥1)時(shí),不等式成立,即,則n=k+1時(shí),,令代入,得,即:,由(1)(1)可知不等式對(duì)任何n∈N*都成立.故.考點(diǎn):1利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;1、利用導(dǎo)數(shù)研究函數(shù)的最值;3、數(shù)列的通項(xiàng)公式;4、數(shù)列的前項(xiàng)和;5、不等式的證明.19、(1)(2)或【解析】
(1)由已知條件得到方程組,解得即可;(2)由題意得直線的斜率存在,設(shè)直線方程為,聯(lián)立直線與橢圓方程,消元、列出韋達(dá)定理,由得到的范圍,設(shè)弦中點(diǎn)坐標(biāo)為則,所以在軸上方,只需位于內(nèi)(含邊界)就可以,即滿(mǎn)足,得到不等式組,解得即可;【詳解】解:(1)由已知橢圓右焦點(diǎn)坐標(biāo)為,離心率為,,,所以橢圓的標(biāo)準(zhǔn)方程為;(2)由題意得直線的斜率存在,設(shè)直線方程為聯(lián)立,消元整理得,,由,解得設(shè)弦中點(diǎn)坐標(biāo)為,所以在軸上方,只需位于內(nèi)(含邊界)就可以,即滿(mǎn)足,即,解得或【點(diǎn)睛】本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì),直線與橢圓的綜合應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.20、(1);(2).【解析】
(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡(jiǎn),即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡(jiǎn)為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時(shí)取最大值.故的最大值為.【點(diǎn)睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題21、(1);(2).【解析】
(1)分類(lèi)討論去絕對(duì)值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對(duì)值,轉(zhuǎn)化為在時(shí)恒成立,得到,,在恒成立,從而得到的取值范圍.【詳解】(1)當(dāng)時(shí),,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),,因?yàn)?,?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年玻璃制品采購(gòu)合同
- 2024年物業(yè)服務(wù)與社區(qū)文化活動(dòng)策劃委托合同3篇
- 《背影》課時(shí)教案模板
- 擬定財(cái)務(wù)的個(gè)人工作計(jì)劃大全
- 2024山東基礎(chǔ)軟件服務(wù)市場(chǎng)前景及投資研究報(bào)告
- 產(chǎn)科工作計(jì)劃
- 初中教師年終教學(xué)計(jì)劃五篇
- 幼兒園實(shí)習(xí)自我總結(jié)十篇
- 內(nèi)勤個(gè)人工作計(jì)劃10篇
- 關(guān)于教師一級(jí)述職報(bào)告3篇
- 2025年國(guó)家圖書(shū)館招聘筆試參考題庫(kù)含答案解析
- 機(jī)器人課程課程設(shè)計(jì)
- 南充市市級(jí)事業(yè)單位2024年公招人員擬聘人員歷年管理單位遴選500模擬題附帶答案詳解
- 安全知識(shí)考試題庫(kù)500題(含答案)
- 2024-2025學(xué)年上學(xué)期南京小學(xué)數(shù)學(xué)六年級(jí)期末模擬試卷
- 河北省保定市定興縣2023-2024學(xué)年一年級(jí)上學(xué)期期末調(diào)研數(shù)學(xué)試題(含答案)
- 大學(xué)美育(同濟(jì)大學(xué)版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年湖北省工業(yè)建筑集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 10000中國(guó)普通人名大全
- 武廣高鐵路基常見(jiàn)病害案例解析
- 中國(guó)地圖(各省可調(diào)整編輯)
評(píng)論
0/150
提交評(píng)論