河北省徐水綜合高中2025屆高三下學期第六次檢測數學試卷含解析_第1頁
河北省徐水綜合高中2025屆高三下學期第六次檢測數學試卷含解析_第2頁
河北省徐水綜合高中2025屆高三下學期第六次檢測數學試卷含解析_第3頁
河北省徐水綜合高中2025屆高三下學期第六次檢測數學試卷含解析_第4頁
河北省徐水綜合高中2025屆高三下學期第六次檢測數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省徐水綜合高中2025屆高三下學期第六次檢測數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年末,武漢出現新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則()A. B. C. D.2.若直線與曲線相切,則()A.3 B. C.2 D.3.“完全數”是一些特殊的自然數,它所有的真因子(即除了自身以外的約數)的和恰好等于它本身.古希臘數學家畢達哥拉斯公元前六世紀發(fā)現了第一、二個“完全數”6和28,進一步研究發(fā)現后續(xù)三個完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.4.若的二項式展開式中二項式系數的和為32,則正整數的值為()A.7 B.6 C.5 D.45.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知等差數列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.7.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.8.某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種9.一小商販準備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進價元,乙每件進價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數應分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件10.函數的部分圖象大致為()A. B.C. D.11.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.12.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知復數,其中為虛數單位,則的模為_______________.14.若,則________,________.15.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.16.已知全集,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(I)當時,解不等式.(II)若不等式恒成立,求實數的取值范圍18.(12分)已知直線:與拋物線切于點,直線:過定點Q,且拋物線上的點到點Q的距離與其到準線距離之和的最小值為.(1)求拋物線的方程及點的坐標;(2)設直線與拋物線交于(異于點P)兩個不同的點A、B,直線PA,PB的斜率分別為,那么是否存在實數,使得?若存在,求出的值;若不存在,請說明理由.19.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.20.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.21.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.22.(10分)已知函數(),是的導數.(1)當時,令,為的導數.證明:在區(qū)間存在唯一的極小值點;(2)已知函數在上單調遞減,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達式,再根據基本不等式即可求出.【詳解】設事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設,則∴當且僅當即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應用,互斥事件概率加法公式的應用,以及基本不等式的應用,解題關鍵是對題意的理解和事件的分解,意在考查學生的數學運算能力和數學建模能力,屬于較難題.2、A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數的問題,涉及到的知識點有導數的幾何意義,直線方程的點斜式,屬于簡單題目.3、C【解析】

先求出五個“完全數”隨機分為兩組,一組2個,另一組3個的基本事件總數為,再求出6和28恰好在同一組包含的基本事件個數,根據即可求出6和28不在同一組的概率.【詳解】解:根據題意,將五個“完全數”隨機分為兩組,一組2個,另一組3個,則基本事件總數為,則6和28恰好在同一組包含的基本事件個數,∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數的應用.4、C【解析】

由二項式系數性質,的展開式中所有二項式系數和為計算.【詳解】的二項展開式中二項式系數和為,.故選:C.【點睛】本題考查二項式系數的性質,掌握二項式系數性質是解題關鍵.5、B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.6、C【解析】

首先求出等差數列的首先和公差,然后寫出數列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數列為,故.故選:C.【點睛】本題主要考查了等差數列的基本量的求解,屬于基礎題.7、A【解析】

由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質,屬于基礎題.8、B【解析】

根據條件2名內科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于常考題型.9、D【解析】

由題意列出約束條件和目標函數,數形結合即可解決.【詳解】設購買甲、乙兩種商品的件數應分別,利潤為元,由題意,畫出可行域如圖所示,顯然當經過時,最大.故選:D.【點睛】本題考查線性目標函數的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數,是否是非負數,并準確的畫出可行域,本題是一道基礎題.10、B【解析】

圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況?!驹斀狻?,故奇函數,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。11、D【解析】

根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.12、D【解析】

根據面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用復數模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點睛】本題考查復數模的求法,屬于基礎題.14、【解析】

根據誘導公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.【點睛】本題考查了誘導公式和二倍角公式,屬于簡單題.15、【解析】

過點做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點睛】本題主要考查平面向量的線性運算和平面向量的數量積,由題意作出是解題的關鍵.16、【解析】

利用集合的補集運算即可求解.【詳解】由全集,,所以.故答案為:【點睛】本題考查了集合的補集運算,需理解補集的概念,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據零點分區(qū)間法,去掉絕對值解不等式;(2)根據絕對值不等式的性質得,因此將問題轉化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質得:,要使不等式恒成立,則當時,不等式恒成立;當時,解不等式得.綜上.所以實數的取值范圍為.18、(1),(1,2);(2)存在,【解析】

(1)由直線恒過點點及拋物線C上的點到點Q的距離與到準線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點的坐標;(2)直線與拋物線方程聯(lián)立,利用根與系數的關系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實數使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點Q的坐標為拋物線的焦點坐標,由拋物線C上的點到點Q的距離與到其焦點F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因為直線與拋物線C相切,所以,解得,此時,所以點P坐標為(1,2)(2)設存在滿足條件的實數,點,聯(lián)立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實數=滿足條件.【點睛】本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關系的綜合應用,解答此類題目,通常聯(lián)立直線方程與拋物線方程,應用一元二次方程根與系數的關系進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.19、特征值為1,特征向量為.【解析】

設出矩陣M結合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【詳解】設矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個特征向量為.【點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關鍵是明確其運算規(guī)則,側重考查數學運算的核心素養(yǎng).20、(1);(2)【解析】

(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設出直線方程,聯(lián)立方程組,用韋達定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,∵過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當直線的斜率不存在時,直線的斜率為0,此時(ii)當直線的斜率為零時,.(iii)當直線的斜率存在且不等于零時,設直線的方程為,聯(lián)立,得,設的橫坐標分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設的橫坐標為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點睛】本題考查橢圓的標準方程與幾何性質、直線與圓錐曲線的位置關系的應用問題,解答此類題目,通常利用的關系,確定橢圓方程是基礎;通過聯(lián)立直線方程與橢圓方程建立方程組,應用一元二次方程根與系數,得到目標函數解析式,運用函數知識求解;本題是難題.21、(1),(2)【解析】

(1)利用互化公式把曲線C化成直角坐標方程,把點P的極坐標化成直角坐標;(2)把直線l的參數方程的標準形式代入曲線C的直角坐標方程,根據韋達定理以及參

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論