2024屆四川省宜賓第三中學(xué)高三第十五模數(shù)學(xué)試題_第1頁(yè)
2024屆四川省宜賓第三中學(xué)高三第十五模數(shù)學(xué)試題_第2頁(yè)
2024屆四川省宜賓第三中學(xué)高三第十五模數(shù)學(xué)試題_第3頁(yè)
2024屆四川省宜賓第三中學(xué)高三第十五模數(shù)學(xué)試題_第4頁(yè)
2024屆四川省宜賓第三中學(xué)高三第十五模數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023屆四川省宜賓第三中學(xué)高三第十五模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則的大小關(guān)系是()A. B. C. D.2.雙曲線:(,)的一個(gè)焦點(diǎn)為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.3.總體由編號(hào)01,,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為7816

6572

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

A.08 B.07 C.02 D.014.已知是雙曲線的兩個(gè)焦點(diǎn),過(guò)點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.5.已知點(diǎn)P在橢圓τ:=1(a>b>0)上,點(diǎn)P在第一象限,點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A,點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,設(shè),直線AD與橢圓τ的另一個(gè)交點(diǎn)為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.6.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為則()A. B. C. D.7.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計(jì)劃在高一年級(jí)每周星期一至星期五的每天閱讀半個(gè)小時(shí)中國(guó)四大名著:《紅樓夢(mèng)》、《三國(guó)演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計(jì)劃共有()A.120種 B.240種 C.480種 D.600種8.設(shè)集合則()A. B. C. D.9.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.510.已知函數(shù)的值域?yàn)?,函?shù),則的圖象的對(duì)稱中心為()A. B.C. D.11.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i12.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中的系數(shù)為_(kāi)_________.14.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為_(kāi)_________.15.如圖,直三棱柱中,,,,P是的中點(diǎn),則三棱錐的體積為_(kāi)_______.16.函數(shù)在的零點(diǎn)個(gè)數(shù)為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)超級(jí)病菌是一種耐藥性細(xì)菌,產(chǎn)生超級(jí)細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來(lái)越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對(duì)相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對(duì)它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級(jí)細(xì)菌,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有n()份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;(2)混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次,假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p().(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過(guò)2次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.(i)試運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求p關(guān)于k的函數(shù)關(guān)系式;(ii)若,采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,,,,18.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當(dāng)時(shí),求證:.19.(12分)已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過(guò)的直線分別交橢圓于和,且,問(wèn)是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.20.(12分)已知等差數(shù)列的前n項(xiàng)和為,等比數(shù)列的前n項(xiàng)和為,且,,.(1)求數(shù)列與的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.21.(12分)某健身館為響應(yīng)十九屆四中全會(huì)提出的“聚焦增強(qiáng)人民體質(zhì),健全促進(jìn)全民健身制度性舉措”,提高廣大市民對(duì)全民健身運(yùn)動(dòng)的參與程度,推出了健身促銷活動(dòng),收費(fèi)標(biāo)準(zhǔn)如下:健身時(shí)間不超過(guò)1小時(shí)免費(fèi),超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為20元(不足l小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人各自獨(dú)立地來(lái)該健身館健身,設(shè)甲、乙健身時(shí)間不超過(guò)1小時(shí)的概率分別為,,健身時(shí)間1小時(shí)以上且不超過(guò)2小時(shí)的概率分別為,,且兩人健身時(shí)間都不會(huì)超過(guò)3小時(shí).(1)設(shè)甲、乙兩人所付的健身費(fèi)用之和為隨機(jī)變量(單位:元),求的分布列與數(shù)學(xué)期望;(2)此促銷活動(dòng)推出后,健身館預(yù)計(jì)每天約有300人來(lái)參與健身活動(dòng),以這兩人健身費(fèi)用之和的數(shù)學(xué)期望為依據(jù),預(yù)測(cè)此次促銷活動(dòng)后健身館每天的營(yíng)業(yè)額.22.(10分)已知函數(shù).(1)若曲線的切線方程為,求實(shí)數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對(duì)數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對(duì)稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對(duì)數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.2.A【解析】

根據(jù)題意得到,化簡(jiǎn)得到,得到答案.【詳解】根據(jù)題意知:焦點(diǎn)到漸近線的距離為,故,故漸近線為.故選:.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.3.D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個(gè)個(gè)體是01,選D.考點(diǎn):此題主要考查抽樣方法的概念、抽樣方法中隨機(jī)數(shù)表法,考查學(xué)習(xí)能力和運(yùn)用能力.4.B【解析】

首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長(zhǎng)乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長(zhǎng)為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.5.C【解析】

設(shè),則,,,設(shè),根據(jù)化簡(jiǎn)得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.6.B【解析】

求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運(yùn)算,求得的值.【詳解】易知,則.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)及其坐標(biāo)的對(duì)應(yīng),考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.7.B【解析】

首先將五天進(jìn)行分組,再對(duì)名著進(jìn)行分配,根據(jù)分步乘法計(jì)數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計(jì)數(shù)原理可得不同的閱讀計(jì)劃共有:種本題正確選項(xiàng):【點(diǎn)睛】本題考查排列組合中的分組分配問(wèn)題,涉及到分步乘法計(jì)數(shù)原理的應(yīng)用,易錯(cuò)點(diǎn)是忽略分組中涉及到的平均分組問(wèn)題.8.C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.9.C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模10.B【解析】

由值域?yàn)榇_定的值,得,利用對(duì)稱中心列方程求解即可【詳解】因?yàn)?,又依題意知的值域?yàn)?,所以得,,所以,令,得,則的圖象的對(duì)稱中心為.故選:B【點(diǎn)睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對(duì)稱中心,重點(diǎn)考查值域的求解,易錯(cuò)點(diǎn)是對(duì)稱中心縱坐標(biāo)錯(cuò)寫(xiě)為011.A【解析】

由虛數(shù)單位i的運(yùn)算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點(diǎn)睛】本題考查了虛數(shù)單位i的運(yùn)算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.12.A【解析】

根據(jù)圖象關(guān)于軸對(duì)稱可知關(guān)于對(duì)稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對(duì)稱圖象關(guān)于對(duì)稱時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對(duì)稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問(wèn)題,關(guān)鍵是能夠通過(guò)奇偶性和對(duì)稱性得到函數(shù)的單調(diào)性,通過(guò)自變量的大小關(guān)系求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13.3【解析】

分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€(gè)因式取1時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對(duì)應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€(gè)因式取時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對(duì)應(yīng)系數(shù)為:;故的展開(kāi)式中的系數(shù)為.故答案為:3【點(diǎn)睛】本題考查二項(xiàng)式定理中具體項(xiàng)對(duì)應(yīng)系數(shù)的求解,屬于基礎(chǔ)題14.【解析】

設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長(zhǎng)為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長(zhǎng),,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長(zhǎng)為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計(jì)算能力.15.【解析】

證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點(diǎn),.

故答案為:【點(diǎn)睛】本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎(chǔ)題.16.1【解析】

本問(wèn)題轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問(wèn)題,在同一直角坐標(biāo)系內(nèi),畫(huà)出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問(wèn)題函數(shù)在的零點(diǎn)個(gè)數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問(wèn)題.在同一直角坐標(biāo)系內(nèi),畫(huà)出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn).故答案為:1【點(diǎn)睛】本題考查了求函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)(i)(,且).(ii)最大值為4.【解析】

(1)設(shè)恰好經(jīng)過(guò)2次檢驗(yàn)?zāi)馨殃?yáng)性樣本全部檢驗(yàn)出來(lái)為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進(jìn)而由可得到p關(guān)于k的函數(shù)關(guān)系式;(ii)由可得,推導(dǎo)出,設(shè)(),利用導(dǎo)函數(shù)判斷的單調(diào)性,由單調(diào)性可求出的最大值【詳解】(1)設(shè)恰好經(jīng)過(guò)2次檢驗(yàn)?zāi)馨殃?yáng)性樣本全部檢驗(yàn)出來(lái)為事件A,則,∴恰好經(jīng)過(guò)兩次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關(guān)于k的函數(shù)關(guān)系式為(,且)(ii)由題意知,得,,,,設(shè)(),則,令,則,∴當(dāng)時(shí),,即在上單調(diào)增減,又,,,又,,,∴k的最大值為4【點(diǎn)睛】本題考查古典概型的概率公式的應(yīng)用,考查隨機(jī)變量及其分布,考查利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性18.(1)的極小值為,無(wú)極大值.(2)見(jiàn)解析.【解析】

(1)對(duì)求導(dǎo),確定函數(shù)單調(diào)性,得到函數(shù)極值.(2)構(gòu)造函數(shù),證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調(diào)遞減,在上單調(diào)遞增,所以的極小值為,無(wú)極大值.(2)當(dāng)時(shí),要證,即證.令,則,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時(shí),,所以,即.因?yàn)闀r(shí),,所以當(dāng)時(shí),,所以當(dāng)時(shí),不等式成立.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,極值,不等式的證明,構(gòu)造函數(shù)是解題的關(guān)鍵.19.(1);(2)存在,.【解析】

(1)由條件建立關(guān)于的方程組,可求得,得出橢圓的方程;(2)①當(dāng)直線的斜率不存在時(shí),可求得,求得,②當(dāng)直線的斜率存在且不為0時(shí),設(shè)聯(lián)立直線與橢圓的方程,求出線段,再由得出線段,根據(jù)等差中項(xiàng)可求得,得出結(jié)論.【詳解】(1)由條件得,所以橢圓的方程為:;(2),①當(dāng)直線的斜率不存在時(shí),,此時(shí),②當(dāng)直線的斜率存在且不為0時(shí),設(shè),聯(lián)立消元得,設(shè),,直線的斜率為,同理可得,所以,綜合①②,存在常數(shù),使得成等差數(shù)列.【點(diǎn)睛】本題考查利用橢圓的離心率求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中的弦長(zhǎng)公式的相關(guān)問(wèn)題,當(dāng)兩直線的斜率具有關(guān)系時(shí),可能通過(guò)斜率的代換得出另一條線段的弦長(zhǎng),屬于中檔題.20.(1);(2)【解析】

(1)設(shè)數(shù)列的公差為d,由可得,,由即可解得,故,由,即可解得,進(jìn)而求得.(2)由(1)得,,利用分組求和及錯(cuò)位相減法即可求得結(jié)果.【詳解】(1)設(shè)數(shù)列的公差為d,數(shù)列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1)得,,,故,所以,數(shù)列的前n項(xiàng)和為,設(shè)①,則②,②①得,綜上,數(shù)列的前n項(xiàng)和為.【點(diǎn)睛】本題考查求等差等比的通項(xiàng)公式,考試分組求和及錯(cuò)位相減法求數(shù)列的和,考查學(xué)生的計(jì)算能力,難度一般.21.(1)見(jiàn)解析,40元(2)6000元【解析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論