版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023屆西藏林芝第二高級中學高三元月調(diào)研測試數(shù)學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元2.已知函數(shù),給出下列四個結論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數(shù)是()A. B. C. D.3.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值4.若直線與曲線相切,則()A.3 B. C.2 D.5.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.6.函數(shù)的圖象的大致形狀是()A. B. C. D.7.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.8.已知分別為雙曲線的左、右焦點,點是其一條漸近線上一點,且以為直徑的圓經(jīng)過點,若的面積為,則雙曲線的離心率為()A. B. C. D.9.已知函數(shù).若存在實數(shù),且,使得,則實數(shù)a的取值范圍為()A. B. C. D.10.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.11.若,,,則下列結論正確的是()A. B. C. D.12.設集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三棱錐中,點是斜邊上一點.給出下列四個命題:①若平面,則三棱錐的四個面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號是__________.(把你認為正確命題的序號都填上)14.若復數(shù)滿足,其中是虛數(shù)單位,是的共軛復數(shù),則________.15.雙曲線的左右頂點為,以為直徑作圓,為雙曲線右支上不同于頂點的任一點,連接交圓于點,設直線的斜率分別為,若,則_____.16.已知函數(shù),則曲線在處的切線斜率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.18.(12分)已知,,分別是三個內(nèi)角,,的對邊,.(1)求;(2)若,,求,.19.(12分)已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標系,且兩種坐標系中取相同的長度單位.(1)求曲線的直角坐標方程和的方程化為極坐標方程;(2)設與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.20.(12分)在中,內(nèi)角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.21.(12分)已知函數(shù),其中.(1)①求函數(shù)的單調(diào)區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對任意,都有,求的最大值.22.(10分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.2.C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.3.B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.4.A【解析】
設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.5.B【解析】
首先求得兩曲線的交點坐標,據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.6.B【解析】
根據(jù)函數(shù)奇偶性,可排除D;求得及,由導函數(shù)符號可判斷在上單調(diào)遞增,即可排除AC選項.【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當時,;又當時,,故在上單調(diào)遞增,所以,綜上,時,,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導函數(shù)性質(zhì)與函數(shù)圖象關系,屬于中檔題.7.C【解析】
由于中正項與負項交替出現(xiàn),根據(jù)可排除選項A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.8.B【解析】
根據(jù)題意,設點在第一象限,求出此坐標,再利用三角形的面積即可得到結論.【詳解】由題意,設點在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點,則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點睛】本題主要考查雙曲線的離心率,解決本題的關鍵在于求出與的關系,屬于基礎題.9.D【解析】
首先對函數(shù)求導,利用導數(shù)的符號分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關系,求得結果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點睛】該題考查的是有關根據(jù)函數(shù)值的關系求參數(shù)的取值范圍的問題,涉及到的知識點有利用導數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結合,屬于較難題目.10.D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設,則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關系和中點坐標公式是解答的關鍵,著重考查了推理與運算能力.11.D【解析】
根據(jù)指數(shù)函數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關鍵,著重考查了計算能力,屬于基礎題.12.A【解析】
解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.【點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】
對①,由線面平行的性質(zhì)可判斷正確;對②,三棱錐外接球可看作正方體的外接球,結合外接球半徑公式即可求解;對③,結合題意作出圖形,由勾股定理和內(nèi)接圓對應面積公式求出錐體的高,則可求解;對④,由動點分析可知,當點與點重合時,直線與平面所成的角最大,結合幾何關系可判斷錯誤;【詳解】對于①,因為平面,所以,,,又,所以平面,所以,故四個面都是直角三角形,∴①正確;對于②,若,,,平面,∴三棱錐的外接球可以看作棱長為4的正方體的外接球,∴,,∴體積為,∴②正確;對于③,設內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對于④,∵若,平面,則直線與平面所成的角最大時,點與點重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點睛】本題考查立體幾何基本關系的應用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題14.【解析】
設,代入已知條件進行化簡,根據(jù)復數(shù)相等的條件,求得的值.【詳解】設,由,得,所以,所以.故答案為:【點睛】本小題主要考查共軛復數(shù),考查復數(shù)相等的條件,屬于基礎題.15.【解析】
根據(jù)雙曲線上的點的坐標關系得,交圓于點,所以,建立等式,兩式作商即可得解.【詳解】設,交圓于點,所以易知:即.故答案為:【點睛】此題考查根據(jù)雙曲線上的點的坐標關系求解斜率關系,涉及雙曲線中的部分定值結論,若能熟記常見二級結論,此題可以簡化計算.16.【解析】
求導后代入可構造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點睛】本題考查切線斜率的求解問題,考查導數(shù)的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)1;(2)【解析】
(1),在和中分別運用余弦定理可表示出,運用算兩次的思想即可求得,進而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值.【詳解】(1)由題設,則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時.【點睛】本題主要考查余弦定理在解三角形中的應用,以及三角形面積公式的應用,意在考查學生的數(shù)學運算能力,屬于中檔題.18.(1);(2),或,.【解析】
(1)利用正弦定理,轉化原式為,結合,可得,即得解;(2)由余弦定理,結合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得.因為,所以,代入上式并化簡得.由于,所以.又,故.(2)因為,,,由余弦定理得即,所以.而,所以,為一元二次方程的兩根.所以,或,.【點睛】本題考查了正弦定理,余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.19.(1),;(2)1.【解析】
(1)利用正弦的和角公式,結合極坐標化為直角坐標的公式,即可求得曲線的直角坐標方程;先寫出曲線的普通方程,再利用公式化簡為極坐標即可;(2)先求出的直角坐標,據(jù)此求得中點的直角坐標,將其轉化為極坐標,聯(lián)立曲線的極坐標方程,即可求得兩點的極坐標,則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標方程為:,:的普通方程為,利用公式可得其極坐標方程為(2)由(1)可得的直角坐標方程為,故容易得,,∴,∴的極坐標方程為,把代入得,.把代入得,.∴,即,兩點間的距離為1.【點睛】本題考查極坐標方程和直角坐標方程之間的轉化,涉及參數(shù)方程轉化為普通方程,以及在極坐標系中求兩點之間的距離,屬綜合基礎題.20.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)正弦定理先求得邊c,然后由余弦定理可求得邊b;(Ⅱ)結合二倍角公式及和差公式,即可求得本題答案.【詳解】(Ⅰ)因為,由正弦定理可得,,又,所以,所以根據(jù)余弦定理得,,解得,;(Ⅱ)因為,所以,,,則.【點睛】本題主要考查利用正余弦定理解三角形,以及利用二倍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江宇翔職業(yè)技術學院《公路工程定額原理與計價》2023-2024學年第一學期期末試卷
- 浙江工業(yè)職業(yè)技術學院《采購過程演練》2023-2024學年第一學期期末試卷
- 反諧振阻抗比較小的原因
- 中國傳媒大學《計算機電子電路基礎》2023-2024學年第一學期期末試卷
- 長治醫(yī)學院《劇場品牌管理》2023-2024學年第一學期期末試卷
- 云南司法警官職業(yè)學院《體育-臺球》2023-2024學年第一學期期末試卷
- 企業(yè)內(nèi)部知識分享平臺構建方案
- 保險行業(yè)數(shù)字營銷模板
- 拿破侖歷史名人人物介紹
- 中考誓師大會學生發(fā)言稿
- 小學數(shù)學二年級100以內(nèi)連加連減口算題
- 建設單位如何做好項目管理
- 三年級上遞等式計算400題
- 一次性餐具配送投標方案
- 2024年原發(fā)性肝癌中醫(yī)診療指南
- 2024醫(yī)療建筑韌性設計導則
- 軍隊文職半年述職報告
- 鑄牢中華民族共同體意識-考試復習題庫(含答案)
- 2024年浙江首考高考選考生物試卷試題真題(含答案詳解)
- 天津市紅橋區(qū)2023-2024學年七年級上學期期末地理試題
- 西門子數(shù)字化工廠-數(shù)字化車間-先進制造技術
評論
0/150
提交評論