版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題19方程思想在壓軸題中的應(yīng)用方程思想在中考?jí)狠S題中的應(yīng)用非常廣泛,主要表現(xiàn)在幾何壓軸題中的動(dòng)點(diǎn)問(wèn)題,幾何、函數(shù)壓軸題中的存在性問(wèn)題以及面積問(wèn)題和相似問(wèn)題等。通過(guò)設(shè)出未知數(shù),并用未知數(shù)表示出各線段的長(zhǎng)度,再根據(jù)勾股定理、相似三角形的性質(zhì)以及各幾何圖形的判定,列出方程,進(jìn)行求解。 (2022·上?!そy(tǒng)考中考真題)平行四邊形SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0.(1)若SKIPIF1<0,①證明SKIPIF1<0為菱形;②若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長(zhǎng).(2)以SKIPIF1<0為圓心,SKIPIF1<0為半徑,SKIPIF1<0為圓心,SKIPIF1<0為半徑作圓,兩圓另一交點(diǎn)記為點(diǎn)SKIPIF1<0,且SKIPIF1<0.若SKIPIF1<0在直線SKIPIF1<0上,求SKIPIF1<0的值.(1)①連接AC交BD于O,證△AOE≌△COE(SSS),得∠AOE=∠COE,從而得∠COE=90°,則AC⊥BD,即可由菱形的判定定理得出結(jié)論;②先證點(diǎn)E是△ABC的重心,由重心性質(zhì)得BE=2OE,然后設(shè)OE=x,則BE=2x,在Rt△AOE中,由勾股定理,得OA2=AE2-OE2=32-x2=9-x2,在Rt△AOB中,由勾股定理,得OA2=AB2-OB2=52-(3x)2=25-9x2,從而得9-x2=25-9x2,解得:x=SKIPIF1<0,即可得OB=3x=3SKIPIF1<0,再由平行四邊形性質(zhì)即可得出BD長(zhǎng);(2)由⊙A與⊙B相交于E、F,得AB⊥EF,點(diǎn)E是△ABC的重心,又SKIPIF1<0在直線SKIPIF1<0上,則CG是△ABC的中線,則AG=BG=SKIPIF1<0AB,根據(jù)重心性質(zhì)得GE=SKIPIF1<0CE=SKIPIF1<0AE,CG=CE+GE=SKIPIF1<0AE,在Rt△AGE中,由勾股定理,得AG2=AE2-GEE=AE2-(SKIPIF1<0AE)2=SKIPIF1<0AE2,則AG=SKIPIF1<0AE,所以AB=2AG=SKIPIF1<0AE,在Rt△BGC中,由勾股定理,得BC2=BG2+CG2=SKIPIF1<0AE2+(SKIPIF1<0AE)2=5AE2,則BC=SKIPIF1<0AE,代入即可求得SKIPIF1<0的值.【答案】(1)①見(jiàn)解析;②SKIPIF1<0(2)SKIPIF1<0【詳解】(1)①證明:如圖,連接AC交BD于O,∵平行四邊形SKIPIF1<0,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵平行四邊形SKIPIF1<0,∴四邊形SKIPIF1<0是菱形;②∵OA=OC,∴OB是△ABC的中線,∵SKIPIF1<0為SKIPIF1<0中點(diǎn),∴AP是△ABC的中線,∴點(diǎn)E是△ABC的重心,∴BE=2OE,設(shè)OE=x,則BE=2x,在Rt△AOE中,由勾股定理,得OA2=AE2-OE2=32-x2=9-x2,在Rt△AOB中,由勾股定理,得OA2=AB2-OB2=52-(3x)2=25-9x2,∴9-x2=25-9x2,解得:x=SKIPIF1<0,∴OB=3x=3SKIPIF1<0,∵平行四邊形SKIPIF1<0,∴BD=2OB=6SKIPIF1<0;(2)解:如圖,∵⊙A與⊙B相交于E、F,∴AB⊥EF,由(1)②知點(diǎn)E是△ABC的重心,又SKIPIF1<0在直線SKIPIF1<0上,∴CG是△ABC的中線,∴AG=BG=SKIPIF1<0AB,GE=SKIPIF1<0CE,∵CE=SKIPIF1<0AE,∴GE=SKIPIF1<0AE,CG=CE+GE=SKIPIF1<0AE,在Rt△AGE中,由勾股定理,得AG2=AE2-GEE=AE2-(SKIPIF1<0AE)2=SKIPIF1<0AE2,∴AG=SKIPIF1<0AE,∴AB=2AG=SKIPIF1<0AE,在Rt△BGC中,由勾股定理,得BC2=BG2+CG2=SKIPIF1<0AE2+(SKIPIF1<0AE)2=5AE2,∴BC=SKIPIF1<0AE,∴SKIPIF1<0.本題考查平行四邊形的性質(zhì),菱形的判定,重心的性質(zhì),勾股定理,相交兩圓的公共弦的性質(zhì),本題屬圓與四邊形綜合題目,掌握相關(guān)性質(zhì)是解題的關(guān)鍵,屬是考??碱}目.(2022·廣東深圳·統(tǒng)考中考真題)一個(gè)玻璃球體近似半圓SKIPIF1<0為直徑,半圓SKIPIF1<0上點(diǎn)SKIPIF1<0處有個(gè)吊燈SKIPIF1<0SKIPIF1<0SKIPIF1<0的中點(diǎn)為SKIPIF1<0(1)如圖①,SKIPIF1<0為一條拉線,SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0求SKIPIF1<0的長(zhǎng)度.(2)如圖②,一個(gè)玻璃鏡與圓SKIPIF1<0相切,SKIPIF1<0為切點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn),SKIPIF1<0為入射光線,SKIPIF1<0為反射光線,SKIPIF1<0求SKIPIF1<0的長(zhǎng)度.(3)如圖③,SKIPIF1<0是線段SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0為入射光線,SKIPIF1<0為反射光線交圓SKIPIF1<0于點(diǎn)SKIPIF1<0在SKIPIF1<0從SKIPIF1<0運(yùn)動(dòng)到SKIPIF1<0的過(guò)程中,求SKIPIF1<0點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng).(1)由SKIPIF1<0,可得出SKIPIF1<0為SKIPIF1<0的中位線,可得出D為SKIPIF1<0中點(diǎn),即可得出SKIPIF1<0的長(zhǎng)度;(2)過(guò)N點(diǎn)作SKIPIF1<0,交SKIPIF1<0于點(diǎn)D,可得出SKIPIF1<0為等腰直角三角形,根據(jù)SKIPIF1<0,可得出SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,根據(jù)SKIPIF1<0,即可求得SKIPIF1<0,再根據(jù)勾股定理即可得出答案;(3)依題意得出點(diǎn)N路徑長(zhǎng)為:SKIPIF1<0SKIPIF1<0,推導(dǎo)得出SKIPIF1<0,即可計(jì)算給出SKIPIF1<0,即可得出答案.【答案】(1)2;(2)SKIPIF1<0;(3)SKIPIF1<0【詳解】(1)∵SKIPIF1<0∴SKIPIF1<0為SKIPIF1<0的中位線∴D為SKIPIF1<0的中點(diǎn)∵SKIPIF1<0∴SKIPIF1<0(2)過(guò)N點(diǎn)作SKIPIF1<0,交SKIPIF1<0于點(diǎn)D,∵SKIPIF1<0,∴SKIPIF1<0為等腰直角三角形,即SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴在SKIPIF1<0中,SKIPIF1<0;(3)如圖,當(dāng)點(diǎn)M與點(diǎn)O重合時(shí),點(diǎn)N也與點(diǎn)O重合.當(dāng)點(diǎn)M運(yùn)動(dòng)至點(diǎn)A時(shí),點(diǎn)N運(yùn)動(dòng)至點(diǎn)T,故點(diǎn)N路徑長(zhǎng)為:SKIPIF1<0SKIPIF1<0.∵SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∴N點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)為:SKIPIF1<0SKIPIF1<0,故答案為:SKIPIF1<0.本題考查了圓的性質(zhì),弧長(zhǎng)公式、勾股定理、中位線,利用銳角三角函數(shù)值解三角函數(shù),掌握以上知識(shí),并能靈活運(yùn)用是解題的關(guān)鍵.(2022·遼寧盤錦·中考真題)如圖,拋物線y=﹣SKIPIF1<0x2+bx+c與x軸交于A(﹣3,0),B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,9),點(diǎn)D在y軸正半軸上,OD=4,點(diǎn)P是線段OB上的一點(diǎn),過(guò)點(diǎn)B作BE⊥DP,BE交DP的延長(zhǎng)線于點(diǎn)E.(1)求拋物線解析式;(2)若SKIPIF1<0=SKIPIF1<0,求點(diǎn)P的坐標(biāo);(3)點(diǎn)F為第一象限拋物線上一點(diǎn),在(2)的條件下,當(dāng)∠FPD=∠DPO時(shí),求點(diǎn)F的坐標(biāo).(1)將A(﹣3,0),C(0,9)代入拋物線y=﹣SKIPIF1<0x2+bx+c,建立方程組,求解即可;(2)易證△DPO∽△BPE,所以SKIPIF1<0,設(shè)OP=t(0<t<6),所以BP=6﹣t,由相似比可得,BE2=SKIPIF1<0,PE2=SKIPIF1<0,在Rt△BPE中,利用勾股定理建立方程可求出t的值,即可得出點(diǎn)P的坐標(biāo);(3)如過(guò)點(diǎn)D作DG⊥PF于點(diǎn)G,過(guò)點(diǎn)G作GN⊥x軸于點(diǎn)N,過(guò)點(diǎn)D作DM⊥GN交NG的延長(zhǎng)線于點(diǎn)M,易證△DPO≌△DPG(AAS),所以O(shè)D=GD=4,OP=PG=2,由一線三等角可得△MDG∽△NGP,所以DG:GP=MD:GN=MG:PN=2:1,設(shè)PN=m,則MG=2m,所以GN=4﹣2m,DM=8﹣4m,由平行四邊形的性質(zhì)可得8﹣4m=2+m,解得m=SKIPIF1<0,可得GSKIPIF1<0,由待定系數(shù)法可求得直線PF的解析式為:SKIPIF1<0,聯(lián)立直線PF的解析式和拋物線的解析式可得出點(diǎn)F的坐標(biāo).【答案】(1)SKIPIF1<0(2)P(2,0)(3)F(5,4)【詳解】(1)將A(﹣3,0),C(0,9)代入拋物線y=﹣SKIPIF1<0x2+bx+c,∴SKIPIF1<0,解得SKIPIF1<0.∴拋物線的解析式為:y=﹣SKIPIF1<0x2+SKIPIF1<0x+9.(2)∵拋物線的解析式為:y=﹣SKIPIF1<0x2+SKIPIF1<0x+9,∴B(6,0),∵BE⊥DP,∴∠E=∠DOP=90°,∵∠DPO=∠BPE,∴△DPO∽△BPE,∴SKIPIF1<0,,設(shè)OP=t(0<t<6),∴BP=6﹣t,∴BE2=SKIPIF1<0,PE2=SKIPIF1<0,在Rt△BPE中,由勾股定理可得,BE2+PE2=PB2,∴SKIPIF1<0+SKIPIF1<0=(6﹣t)2,解得t=58(舍)或t=2,∴P(2,0);(3)如圖,過(guò)點(diǎn)D作DG⊥PF于點(diǎn)G,過(guò)點(diǎn)G作GN⊥x軸于點(diǎn)N,過(guò)點(diǎn)D作DM⊥GN交NG的延長(zhǎng)線于點(diǎn)M,∴∠DOP=∠DGP=90°,∵∠FPD=∠DPO,DP=DP,∴△DPO≌△DPG(AAS),∴OD=GD=4,OP=PG=2,∵GN⊥x軸,DM⊥GN,∴∠M=∠GNP=90°,∵∠DGM+∠MDG=∠DGM+∠PGN=90°,∴∠MDG=∠PGN,∴△MDG∽△NGP,∴DG:GP=MD:GN=MG:PN=2:1,設(shè)PN=m,則MG=2m,∴GN=4﹣2m,∴DM=8﹣4m,∴8﹣4m=2+m,解得m=SKIPIF1<0,∴ON=2+SKIPIF1<0=SKIPIF1<0,GN=4﹣2×SKIPIF1<0=SKIPIF1<0,∴G(SKIPIF1<0,SKIPIF1<0),設(shè)直線PF的解析式為:y=kx+b′,∴SKIPIF1<0,解得SKIPIF1<0,∴直線PF的解析式為:SKIPIF1<0,令SKIPIF1<0=SKIPIF1<0,解得x=5或x=SKIPIF1<0(舍),∴F(5,4).本題屬于二次函數(shù)綜合題,涉及待定系數(shù)法求函數(shù)解析式,相似三角形的性質(zhì)與判定,全等三角形的性質(zhì)與判定,二次函數(shù)上點(diǎn)的坐標(biāo)特征等知識(shí),第(2)問(wèn)關(guān)鍵是利用相似三角形的面積比等于相似比的平方表達(dá)出BE2和PE2;第(3)問(wèn)關(guān)鍵是構(gòu)造相似三角形,建立方程.1.(2022·山東菏澤·菏澤一中??寄M)如圖1,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的度數(shù);(2)如圖2,連接SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于E,連接SKIPIF1<0,求證:SKIPIF1<0;(3)如圖3,在(2)的條件下,點(diǎn)G為SKIPIF1<0的中點(diǎn),連接SKIPIF1<0交SKIPIF1<0于點(diǎn)F,若SKIPIF1<0,求線段SKIPIF1<0的長(zhǎng).【答案】(1)SKIPIF1<0(2)見(jiàn)解析(3)SKIPIF1<0【思路分析】(1)設(shè)SKIPIF1<0.則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0平分SKIPIF1<0,得到SKIPIF1<0,由三角形內(nèi)角和定理SKIPIF1<0,求得SKIPIF1<0,進(jìn)一步即可得到答案;(2)先證明SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,又由SKIPIF1<0得SKIPIF1<0,即可得到結(jié)論;(3)由O是SKIPIF1<0的中點(diǎn)及SKIPIF1<0得到SKIPIF1<0,再證明SKIPIF1<0,得到SKIPIF1<0,則SKIPIF1<0,又由SKIPIF1<0,即可得到答案.【詳解】(1)解:如圖1中,設(shè)SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.(2)證明:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)解:如圖3中,連接SKIPIF1<0,取O是SKIPIF1<0的中點(diǎn),∵SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0(舍去),由(1)、(2)及根據(jù)G是SKIPIF1<0的中點(diǎn)可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.2.(2022·海南海口·海南華僑中學(xué)校聯(lián)考模擬)如圖①,在正方形SKIPIF1<0中,點(diǎn)E、F、G、H分別在邊SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0上,若SKIPIF1<0,(1)求證:SKIPIF1<0;(2)如果把題目中的“正方形”改為“長(zhǎng)方形”、若SKIPIF1<0,SKIPIF1<0(如圖②),求SKIPIF1<0的值;(3)如果把題目中的“SKIPIF1<0”改為“SKIPIF1<0與SKIPIF1<0的夾角為45°”(如圖③),若正方形SKIPIF1<0的邊長(zhǎng)為2,SKIPIF1<0的長(zhǎng)為SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【答案】(1)見(jiàn)詳解(2)SKIPIF1<0(3)SKIPIF1<0【思路分析】(1)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交于SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交于SKIPIF1<0,證明SKIPIF1<0即可求解;(2)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交于SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交于SKIPIF1<0,由(1)可得SKIPIF1<0,再由SKIPIF1<0,可求SKIPIF1<0;(3)過(guò)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,以SKIPIF1<0為旋轉(zhuǎn)中心,SKIPIF1<0繞SKIPIF1<0點(diǎn)順時(shí)針旋轉(zhuǎn)SKIPIF1<0到SKIPIF1<0,可證明SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,求出SKIPIF1<0,在SKIPIF1<0中,求出SKIPIF1<0,再由SKIPIF1<0即可求解.【詳解】(1)證明:過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交于SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)解:過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交于SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交于SKIPIF1<0,由(1)可得,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0;(3)解:過(guò)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,以SKIPIF1<0為旋轉(zhuǎn)中心,SKIPIF1<0繞SKIPIF1<0點(diǎn)順時(shí)針旋轉(zhuǎn)SKIPIF1<0到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.3.(2022·河南洛陽(yáng)·統(tǒng)考二模)如圖1,在四邊形SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0在邊SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0.作SKIPIF1<0,交線段SKIPIF1<0于點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0.(1)求證:SKIPIF1<0;(2)如圖2,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長(zhǎng);(3)如圖3,若SKIPIF1<0的延長(zhǎng)線經(jīng)過(guò)SKIPIF1<0的中點(diǎn)SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)見(jiàn)解析(2)6(3)SKIPIF1<0【思路分析】(1)先根據(jù)題意得出SKIPIF1<0,SKIPIF1<0,再證四邊形SKIPIF1<0是平行四邊形,得出SKIPIF1<0,進(jìn)而得出SKIPIF1<0,再由平行線性質(zhì)得SKIPIF1<0,進(jìn)而證得結(jié)論;(2)先證明SKIPIF1<0,得SKIPIF1<0,根據(jù)四邊形SKIPIF1<0是平行四邊形,得SKIPIF1<0,SKIPIF1<0,進(jìn)而可得SKIPIF1<0,求得SKIPIF1<0,SKIPIF1<0,再利用SKIPIF1<0,求得答案;(3)如圖3,延長(zhǎng)SKIPIF1<0、SKIPIF1<0交于點(diǎn)SKIPIF1<0,先證明SKIPIF1<0,得出SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,再利用SKIPIF1<0,列方程求解即可.【詳解】(1)證明:如圖1,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0;(2)解:如圖2∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由(1)知:四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0;(3)解:如圖3,延長(zhǎng)SKIPIF1<0、SKIPIF1<0交于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均為等腰三角形,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0SKIPIF1<0.4.(2022·寧夏吳忠·校考一模)已知:如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),沿SKIPIF1<0向點(diǎn)SKIPIF1<0勻速運(yùn)動(dòng),速度為SKIPIF1<0;過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,同時(shí),點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),沿SKIPIF1<0向點(diǎn)SKIPIF1<0勻速運(yùn)動(dòng),速度為SKIPIF1<0;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),連接SKIPIF1<0.設(shè)運(yùn)動(dòng)時(shí)間為SKIPIF1<0,解答下列問(wèn)題:(1)當(dāng)t為何值時(shí),四邊形SKIPIF1<0為平行四邊形?(2)設(shè)四邊形SKIPIF1<0的面積為y(cm2),試確定y與t的函數(shù)關(guān)系式;(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使SKIPIF1<0?若存在,請(qǐng)說(shuō)明理由,若存在,求出t的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)存在,2【思路分析】(1)根據(jù)勾股定理求出SKIPIF1<0,根據(jù)平行四邊形的性質(zhì)得到SKIPIF1<0,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可;(2)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,證明SKIPIF1<0,根據(jù)相似三角形的性質(zhì)求出SKIPIF1<0、SKIPIF1<0,根據(jù)梯形的面積公式計(jì)算即可;(3)根據(jù)題意列出一元二次方程,解方程求出SKIPIF1<0,根據(jù)相似三角形的性質(zhì)、勾股定理計(jì)算即可.【詳解】(1)解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,解得,SKIPIF1<0,答:當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0為平行四邊形;(2)解:過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,解得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,解得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0;(3)解:若存在某一時(shí)刻,使SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得,SKIPIF1<0(舍去),SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0時(shí),SKIPIF1<0.5.(2022·山東青島·校考二模)已知,如圖,矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0以每秒SKIPIF1<0個(gè)單位從點(diǎn)SKIPIF1<0向點(diǎn)SKIPIF1<0運(yùn)動(dòng),同時(shí)點(diǎn)SKIPIF1<0沿著SKIPIF1<0以每秒SKIPIF1<0個(gè)單位從SKIPIF1<0向SKIPIF1<0運(yùn)動(dòng),在點(diǎn)SKIPIF1<0運(yùn)動(dòng)的同時(shí),作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0移動(dòng)到SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0停止運(yùn)動(dòng).以SKIPIF1<0和SKIPIF1<0為邊作平行四邊形SKIPIF1<0,設(shè)運(yùn)動(dòng)時(shí)間為SKIPIF1<0秒.(1)幾秒時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0?(2)設(shè)平行四邊形SKIPIF1<0的面積是SKIPIF1<0,用SKIPIF1<0表示SKIPIF1<0;(3)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0嗎?說(shuō)明理由.(4)存不存在某個(gè)時(shí)刻,使得SKIPIF1<0?若存在,求出SKIPIF1<0;若不存在,說(shuō)明理由.【答案】(1)當(dāng)運(yùn)動(dòng)時(shí)間是SKIPIF1<0秒時(shí),SKIPIF1<0∽SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0,理由見(jiàn)解析(4)SKIPIF1<0【思路分析】(1)可推出SKIPIF1<0SKIPIF1<0SKIPIF1<0,進(jìn)而得出SKIPIF1<0,進(jìn)一步得出結(jié)果;(2)設(shè)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,根據(jù)SKIPIF1<0∽SKIPIF1<0表示出SKIPIF1<0,根據(jù)SKIPIF1<0SKIPIF1<0SKIPIF1<0表示出SKIPIF1<0,從而表示出SKIPIF1<0上的高SKIPIF1<0,進(jìn)一步得出結(jié)果;(3)先表示出SKIPIF1<0,根據(jù)SKIPIF1<0SKIPIF1<0SKIPIF1<0求得SKIPIF1<0的值,進(jìn)而表示出SKIPIF1<0和SKIPIF1<0,根據(jù)SKIPIF1<0和SKIPIF1<0的數(shù)量關(guān)系確定SKIPIF1<0和SKIPIF1<0的數(shù)量關(guān)系;(4)連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,當(dāng)SKIPIF1<0可推出點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),進(jìn)而推出SKIPIF1<0點(diǎn)為SKIPIF1<0的中點(diǎn),進(jìn)一步求得結(jié)果.【詳解】(1)解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0當(dāng)運(yùn)動(dòng)時(shí)間是SKIPIF1<0秒時(shí),SKIPIF1<0∽SKIPIF1<0;(2)設(shè)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,理由如下:當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0SKIPIF1<0SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(4)如圖,連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0,SKIPIF1<0,即:SKIPIF1<0,SKIPIF1<0.6.(2022·四川成都·成都市樹(shù)德實(shí)驗(yàn)中學(xué)??寄M)如圖,在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0與兩坐標(biāo)軸分別相交于SKIPIF1<0三點(diǎn).(1)求證:SKIPIF1<0;(2)點(diǎn)SKIPIF1<0是第一象限內(nèi)拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0軸的垂線交SKIPIF1<0于點(diǎn)S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- (3篇)2024大學(xué)輔導(dǎo)員個(gè)人工作總結(jié)
- 教師政治思想及職業(yè)道德方面的考核報(bào)告
- 2024年淮南聯(lián)合大學(xué)高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 烏魯木齊市八年級(jí)上學(xué)期期末地理試題及答案
- 二零二五年旅游開(kāi)發(fā)項(xiàng)目合同2篇
- 2024年陜西省婦幼保健院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2024年河南藝術(shù)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫(kù)含答案解析
- 2024年阜陽(yáng)市第三人民醫(yī)院阜陽(yáng)市中心醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2024年長(zhǎng)春市婦產(chǎn)科醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2024年江西工商職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 健康食品開(kāi)發(fā)及生產(chǎn)協(xié)議
- 數(shù)字孿生產(chǎn)業(yè)發(fā)展及軌道交通領(lǐng)域的應(yīng)用研究
- 2024年中學(xué)總務(wù)處工作總結(jié)
- 手術(shù)室各級(jí)人員培訓(xùn)
- 教育部中國(guó)特色學(xué)徒制課題:基于中國(guó)特色學(xué)徒制的新形態(tài)教材建設(shè)與應(yīng)用研究
- 2025年護(hù)理質(zhì)量與安全管理工作計(jì)劃
- (T8聯(lián)考)2025屆高三部分重點(diǎn)中學(xué)12月第一次聯(lián)考評(píng)物理試卷(含答案詳解)
- 工程施工揚(yáng)塵防治教育培訓(xùn)
- 紅薯采購(gòu)合同模板
- 2023年河南省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 山西省太原市重點(diǎn)中學(xué)2025屆物理高一第一學(xué)期期末統(tǒng)考試題含解析
評(píng)論
0/150
提交評(píng)論