大連高三一模數(shù)學(xué)試卷_第1頁(yè)
大連高三一模數(shù)學(xué)試卷_第2頁(yè)
大連高三一模數(shù)學(xué)試卷_第3頁(yè)
大連高三一模數(shù)學(xué)試卷_第4頁(yè)
大連高三一模數(shù)學(xué)試卷_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

大連高三一模數(shù)學(xué)試卷一、選擇題

1.若函數(shù)\(f(x)=\sqrt{x^2-4x+3}\)的定義域?yàn)閈(D_f\),則\(D_f\)等于()

A.\(x\leq1\)或\(x\geq3\)

B.\(x<1\)或\(x>3\)

C.\(x\leq3\)或\(x\geq1\)

D.\(x\geq1\)且\(x\leq3\)

2.在等差數(shù)列\(zhòng)(\{a_n\}\)中,若\(a_1=2\),\(a_4=10\),則該數(shù)列的公差為()

A.2

B.3

C.4

D.5

3.若\(\triangleABC\)中,\(A=60^\circ\),\(b=5\),\(c=10\),則\(a\)的值為()

A.5

B.10

C.15

D.20

4.若\(\lim_{x\to0}\frac{\sin3x}{x}=3\),則\(\lim_{x\to0}\frac{\sin2x}{x}\)的值為()

A.2

B.3

C.4

D.6

5.已知復(fù)數(shù)\(z=a+bi\)(\(a,b\in\mathbb{R}\))滿足\(|z-2i|=3\),則復(fù)數(shù)\(z\)的取值范圍是()

A.\(z=a+bi\),其中\(zhòng)(a\in[-1,5],b\in[-2,2]\)

B.\(z=a+bi\),其中\(zhòng)(a\in[-5,1],b\in[-2,2]\)

C.\(z=a+bi\),其中\(zhòng)(a\in[-3,3],b\in[-2,2]\)

D.\(z=a+bi\),其中\(zhòng)(a\in[-5,5],b\in[-2,2]\)

6.若\(x^2-5x+6=0\)的兩個(gè)根分別為\(x_1\)和\(x_2\),則\(x_1+x_2\)的值為()

A.1

B.2

C.3

D.5

7.在\(\triangleABC\)中,若\(\cosA=\frac{1}{2}\),\(\cosB=\frac{\sqrt{3}}{2}\),\(\cosC=\frac{1}{2}\),則\(\sinC\)的值為()

A.\(\frac{\sqrt{3}}{2}\)

B.\(\frac{1}{2}\)

C.\(\frac{\sqrt{2}}{2}\)

D.\(\frac{\sqrt{6}}{4}\)

8.若\(\lim_{x\to1}\frac{x^2-2x+1}{x-1}=2\),則\(\lim_{x\to1}\frac{x^2-2x+1}{x^2-1}\)的值為()

A.2

B.1

C.\(\frac{1}{2}\)

D.無(wú)窮大

9.已知\(f(x)=ax^2+bx+c\)(\(a\neq0\))是\(\mathbb{R}\)上的二次函數(shù),若\(f(1)=1\),\(f(-1)=1\),則\(f(0)\)的值為()

A.0

B.1

C.2

D.-1

10.若\(\log_{\frac{1}{2}}2=-1\),則\(\log_{2}2\)的值為()

A.1

B.2

C.4

D.-1

二、判斷題

1.在等差數(shù)列中,若公差為負(fù),則數(shù)列是遞減的。()

2.若兩個(gè)三角形的對(duì)應(yīng)邊長(zhǎng)成比例,則這兩個(gè)三角形相似。()

3.在數(shù)列\(zhòng)(\{a_n\}\)中,若\(a_{n+1}=2a_n+1\),則該數(shù)列是等比數(shù)列。()

4.函數(shù)\(y=x^3\)在其定義域內(nèi)是單調(diào)遞增的。()

5.對(duì)于任何實(shí)數(shù)\(a\),都有\(zhòng)(a^2+b^2\geq2ab\)(其中\(zhòng)(a,b\)為實(shí)數(shù))。()

三、填空題

1.若\(\sin\theta=\frac{1}{2}\),且\(\theta\)在第二象限,則\(\cos\theta=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\

四、簡(jiǎn)答題

1.簡(jiǎn)述二次函數(shù)\(y=ax^2+bx+c\)(\(a\neq0\))的圖像特點(diǎn),并說(shuō)明如何通過(guò)圖像確定函數(shù)的增減性和最值。

2.給定數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和為\(S_n=3n^2-2n\),求該數(shù)列的通項(xiàng)公式。

3.在\(\triangleABC\)中,已知\(a=8\),\(b=6\),\(c=10\),求\(\sinA\),\(\sinB\),\(\sinC\)的值。

4.設(shè)\(f(x)=\frac{x^2-4x+3}{x-1}\),求\(f(x)\)的導(dǎo)數(shù)\(f'(x)\),并說(shuō)明\(f(x)\)在\(x=1\)處的極限是否存在。

5.證明:對(duì)于任意實(shí)數(shù)\(a\),\(b\),\(c\),若\(a^2+b^2+c^2=1\),則\(a^2+b^2+c^2\geqab+bc+ca\)。

五、計(jì)算題

1.計(jì)算定積分\(\int_0^1(2x^3-3x^2+4)\,dx\)。

2.解方程組\(\begin{cases}2x-y=5\\x+3y=11\end{cases}\)。

3.已知函數(shù)\(f(x)=x^3-3x+2\),求\(f(x)\)的極值點(diǎn),并判斷極值的類型。

4.求函數(shù)\(g(x)=\frac{x^2-1}{x-1}\)的反函數(shù)\(g^{-1}(x)\)。

5.在直角坐標(biāo)系中,已知點(diǎn)\(A(1,2)\),\(B(4,5)\),\(C(6,3)\),求直線\(AB\)和\(BC\)的方程。

六、案例分析題

1.案例分析:某學(xué)校為了提高學(xué)生的數(shù)學(xué)成績(jī),決定對(duì)高三年級(jí)進(jìn)行一次數(shù)學(xué)競(jìng)賽。競(jìng)賽題目包括選擇題、填空題、簡(jiǎn)答題和計(jì)算題。請(qǐng)你根據(jù)以下案例,分析競(jìng)賽題目設(shè)置是否合理,并提出改進(jìn)建議。

案例:競(jìng)賽題目中,選擇題和填空題共占40%,簡(jiǎn)答題占30%,計(jì)算題占30%。選擇題和填空題主要考察學(xué)生的基礎(chǔ)知識(shí),簡(jiǎn)答題和計(jì)算題則側(cè)重于考察學(xué)生的綜合運(yùn)用能力和解題技巧。

2.案例分析:某班級(jí)在進(jìn)行數(shù)學(xué)學(xué)習(xí)小組討論時(shí),發(fā)現(xiàn)學(xué)生在解決某些數(shù)學(xué)問(wèn)題時(shí)存在困難。以下為討論中提出的問(wèn)題:

(1)學(xué)生在解決三角形問(wèn)題時(shí),對(duì)三角函數(shù)的理解和應(yīng)用不夠熟練。

(2)學(xué)生在解決數(shù)列問(wèn)題時(shí),對(duì)通項(xiàng)公式的推導(dǎo)和應(yīng)用存在困難。

(3)學(xué)生在解決函數(shù)問(wèn)題時(shí),對(duì)函數(shù)圖像和性質(zhì)的認(rèn)識(shí)不夠深入。

請(qǐng)你根據(jù)以上問(wèn)題,分析可能的原因,并提出相應(yīng)的教學(xué)改進(jìn)措施。

七、應(yīng)用題

1.應(yīng)用題:某公司生產(chǎn)一種產(chǎn)品,每件產(chǎn)品的成本為20元,售價(jià)為30元。如果銷售數(shù)量達(dá)到100件,則可以獲得500元的固定補(bǔ)貼。假設(shè)銷售數(shù)量每增加10件,售價(jià)就會(huì)下降1元。請(qǐng)問(wèn),為了使得利潤(rùn)最大化,公司應(yīng)該銷售多少件產(chǎn)品?

2.應(yīng)用題:一個(gè)長(zhǎng)方形的長(zhǎng)是寬的3倍。如果長(zhǎng)和寬都增加相同長(zhǎng)度,那么新的長(zhǎng)方形的面積將是原面積的144%。求原長(zhǎng)方形的長(zhǎng)和寬。

3.應(yīng)用題:一個(gè)投資者計(jì)劃將10萬(wàn)元投資于兩種股票,其中一種股票的預(yù)期年收益率為10%,另一種股票的預(yù)期年收益率為8%。投資者希望整體投資組合的預(yù)期年收益率為9%。請(qǐng)問(wèn),投資者應(yīng)該如何分配這10萬(wàn)元的投資?

4.應(yīng)用題:某市計(jì)劃在一條新修的公路上安裝路燈。已知每盞路燈的安裝費(fèi)用為1000元,每盞路燈的年維護(hù)費(fèi)用為200元。根據(jù)規(guī)劃,公路的長(zhǎng)度為5公里,每隔100米安裝一盞路燈。請(qǐng)問(wèn),該市在安裝和維護(hù)這些路燈上需要投入多少總費(fèi)用?

本專業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下:

一、選擇題

1.A

2.B

3.C

4.B

5.A

6.B

7.C

8.A

9.A

10.A

二、判斷題

1.√

2.√

3.×

4.√

5.√

三、填空題

1.\(-\frac{\sqrt{3}}{2}\)

2.\(a_n=3n-1\)

3.\(\sinA=\frac{\sqrt{3}}{2}\),\(\sinB=\frac{\sqrt{3}}{2}\),\(\sinC=\frac{1}{2}\)

4.\(f'(x)=2x-4\)

5.\(x=2\)

四、簡(jiǎn)答題

1.二次函數(shù)\(y=ax^2+bx+c\)的圖像特點(diǎn)包括:

-當(dāng)\(a>0\)時(shí),圖像開口向上,有最小值;當(dāng)\(a<0\)時(shí),圖像開口向下,有最大值。

-頂點(diǎn)坐標(biāo)為\(\left(-\frac{2a},\frac{4ac-b^2}{4a}\right)\)。

-函數(shù)的增減性取決于\(a\)的符號(hào),\(a>0\)時(shí),函數(shù)在頂點(diǎn)左側(cè)遞減,右側(cè)遞增;\(a<0\)時(shí),函數(shù)在頂點(diǎn)左側(cè)遞增,右側(cè)遞減。

2.數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和為\(S_n=3n^2-2n\),則通項(xiàng)公式為\(a_n=S_n-S_{n-1}=6n-5\)。

3.在\(\triangleABC\)中,利用余弦定理\(a^2=b^2+c^2-2bc\cosA\),代入已知值得到\(\cosA=\frac{1}{2}\),則\(\sinA=\frac{\sqrt{3}}{2}\)。同理,可以求得\(\sinB\)和\(\sinC\)。

4.函數(shù)\(f(x)=\frac{x^2-4x+3}{x-1}\)的導(dǎo)數(shù)\(f'(x)\)為\(f'(x)=\frac{(x-1)(2x-4)-(x^2-4x+3)}{(x-1)^2}=\frac{2x^2-6x+4-x^2+4x-3}{(x-1)^2}=\frac{x^2-2x+1}{(x-1)^2}=\frac{(x-1)^2}{(x-1)^2}=1\)。由于\(f(x)\)在\(x=1\)處有定義,因此極限存在且為1。

5.證明:對(duì)于任意實(shí)數(shù)\(a\),\(b\),\(c\),若\

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論