版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版初中數(shù)學(xué)公式大全(集合15篇)人教版初中數(shù)學(xué)公式大全21、全等①三組對應(yīng)邊分別相等的兩個三角形全等(簡稱SSS或“邊邊邊”);②有兩邊及其夾角對應(yīng)相等的兩個三角形全等(SAS或“邊角邊”);③有兩角及其夾邊對應(yīng)相等的兩個三角形全等(ASA或“角邊角”);④有兩角及其一角的對邊對應(yīng)相等的兩個三角形全等(AAS或“角角邊”);⑤直角三角形全等條件有:斜邊及一直角邊對應(yīng)相等的兩個直角三角形全等(HL或“斜邊,直角邊”);⑥三條中線(或高、角平分線)分別對應(yīng)相等的兩個三角形全等。2、角①定理1在角的平分線上的點(diǎn)到這個角的兩邊的距離相等②定理2到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上3、三角形①直角三角形斜邊上的中線等于斜邊上的一半②勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c③和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上④等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)⑤推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊⑥等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合⑦推論3等邊三角形的各角都相等,并且每一個角都等于60°⑧等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)⑨推論1三個角都相等的三角形是等邊三角形⑨推論2有一個角等于60°的等腰三角形是等邊三角形⑩在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的’一半二、初中二、三年級數(shù)學(xué)所有公式1、點(diǎn)線之間的關(guān)系①過一點(diǎn)有且只有一條直線和已知直線垂直②直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短2、平行定理與公理①經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行②如果兩條直線都和第三條直線平行,這兩條直線也互相平行③同位角相等,兩直線平行④內(nèi)錯角相等,兩直線平行⑤同旁內(nèi)角互補(bǔ),兩直線平行3、三角形內(nèi)角和定理與四邊形內(nèi)角和定理三角形三個內(nèi)角的和等于180°,四邊形的外角和等于360°4、平行四邊形、矩形、菱形、正方形和等腰梯形的判定定理與性質(zhì)定理①平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形②平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形③平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形④平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形⑤矩形性質(zhì)定理1矩形的四個角都是直角⑥矩形性質(zhì)定理2矩形的對角線相等⑦矩形判定定理1有三個角是直角的四邊形是矩形⑧矩形判定定理2對角線相等的平行四邊形是矩形⑨菱形性質(zhì)定理1菱形的四條邊都相等⑩菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角……5、圓的一些定理與推論①圓的兩條平行弦所夾的弧相等②在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等③在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都相等④一條弧所對的圓周角等于它所對的圓心角的一半⑤同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等⑥半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑⑦如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形⑧圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角6、直線與圓的位置關(guān)系①直線L和⊙O相交d②直線L和⊙O相切d=r③直線L和⊙O相離d>r7、兩圓之間的位置關(guān)系①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)三、初中代數(shù)所有公式1、乘法與因式分解①a2-b2=(a+b)(a-b)②a3+b3=(a+b)(a2-ab+b2)③a3-b3=(a-b(a2+ab+b2)2、三角不等式①|(zhì)a+b|≤|a|+|b|②|a-b|≤|a|+|b|③|a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式b2-4ac=0注:方程有兩個相等的實(shí)根b2-4ac>0注:方程有兩個不等的實(shí)根b2-4ac看過初中數(shù)學(xué)公式表之常用數(shù)學(xué)公式,相信同學(xué)們都熟知乘法與因式分解、三角不等式、一元二次方程的解、根與系數(shù)的關(guān)系等公式內(nèi)容了吧。接下來還有更多的初中數(shù)學(xué)訊息盡在哦。初中數(shù)學(xué)正方形定理公式關(guān)于正方形定理公式的內(nèi)容精講知識,希望同學(xué)們很好的掌握下面的內(nèi)容。正方形定理公式正方形的特征:①正方形的四邊相等;②正方形的四個角都是直角;③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;正方形的判定:①有一個角是直角的菱形是正方形;②有一組鄰邊相等的矩形是正方形。希望上面對正方形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會取得很好的成績的哦。初中數(shù)學(xué)平行四邊形定理公式同學(xué)們認(rèn)真學(xué)習(xí),下面是老師對數(shù)學(xué)中平行四邊形定理公式的內(nèi)容講解。平行四邊形平行四邊形的性質(zhì):①平行四邊形的對邊相等;②平行四邊形的對角相等;③平行四邊形的對角線互相平分;平行四邊形的判定:①兩組對角分別相等的四邊形是平行四邊形;②兩組對邊分別相等的四邊形是平行四邊形;③對角線互相平分的四邊形是平行四邊形;④一組對邊平行且相等的四邊形是平行四邊形。上面對數(shù)學(xué)中平行四邊形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,相信同學(xué)們會從中學(xué)習(xí)的更好的’哦。初中數(shù)學(xué)直角三角形定理公式下面是對直角三角形定理公式的內(nèi)容講解,希望給同學(xué)們的學(xué)習(xí)很好的幫助。直角三角形的性質(zhì):①直角三角形的兩個銳角互為余角;②直角三角形斜邊上的中線等于斜邊的一半;③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);④直角三角形中30度角所對的直角邊等于斜邊的一半;直角三角形的判定:①有兩個角互余的三角形是直角三角形;②如果三角形的三邊長a、b、c有下面關(guān)系a+b=c,那么這個三角形是直角三角形(勾股定理的逆定理)。以上對數(shù)學(xué)直角三角形定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們都能考試成功。初中數(shù)學(xué)等腰三角形的性質(zhì)定理公式下面是對等腰三角形的性質(zhì)定理公式的內(nèi)容學(xué)習(xí),希望同學(xué)們認(rèn)真看看。等腰三角形的性質(zhì):①等腰三角形的兩個底角相等;②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)上面對等腰三角形的性質(zhì)定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們在考試中取得很好的成績。初中數(shù)學(xué)三角形定理公式對于三角形定理公式的學(xué)習(xí),我們做下面的內(nèi)容講解學(xué)習(xí)哦。三角形三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的三條角平分線交于一點(diǎn)(內(nèi)心);三角形的三邊的垂直平分線交于一點(diǎn)(外心);三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;以上對三角形定理公式的內(nèi)容講解學(xué)習(xí),希望同學(xué)們都能很好的掌握,并在考試中取得很好的成績哦。人教版初中數(shù)學(xué)公式大全121過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯角相等14兩直線平行,同旁內(nèi)角互補(bǔ)15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于18018推論1直角三角形的兩個銳角互余19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點(diǎn)到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于6034等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60的等腰三角形是等邊三角形37在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半39定理線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等40逆定理和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上45逆定理如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個三角形是直角三角形48定理四邊形的內(nèi)角和等于36049四邊形的外角和等于36050多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)18051推論任意多邊的外角和等于36052平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(ab)267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71定理1關(guān)于中心對稱的兩個圖形是全等的72定理2關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分73逆定理如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)2S=Lh83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓106和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的平分線108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點(diǎn)確定一個圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?、谙业拇怪逼椒志€經(jīng)過圓心,并且平分弦所對的兩條?、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等116定理一條弧所對的圓周角等于它所對的圓心角的一半117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經(jīng)過半徑的`外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心126切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等134如果兩個圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139正n邊形的每個內(nèi)角都等于(n-2)180/n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積3a/4a表示邊長143如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為360,因此k(n-2)180/n=360化為(n-2)(k-2)=4144弧長計算公式:L=n兀R/180145扇形面積公式:S扇形=n兀R/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)實(shí)用工具:常用數(shù)學(xué)公式乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b||a|+|b||a-b||a|+|b||a|=-bb|a-b||a|-|b|-|a||a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式b2-4ac=0注:方程有兩個相等的實(shí)根b2-4ac0注:方程有兩個不等的實(shí)根b2-4ac0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=((1-cosA)/2)sin(A/2)=-((1-cosA)/2)cos(A/2)=((1+cosA)/2)cos(A/2)=-((1+cosA)/2)tan(A/2)=((1-cosA)/((1+cosA))tan(A/2)=-((1-cosA)/((1+cosA))ctg(A/2)=((1+cosA)/((1-cosA))ctg(A/2)=-((1+cosA)/((1-cosA))和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些數(shù)列前n項(xiàng)和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理:a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理:b2=a2+c2-2accosB注:角B是邊a和邊c的夾角圓的標(biāo)準(zhǔn)方程:(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)圓的一般方程:x2+y2+Dx+Ey+F=0注:D2+E2-4F0拋物線標(biāo)準(zhǔn)方程:y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c*h正棱錐側(cè)面積S=1/2c*h正棱臺側(cè)面積S=1/2(c+c圓臺側(cè)面積S=1/2(c+c)l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l弧長公式l=a*ra是圓心角的弧度數(shù)r0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=SL注:其中,S是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h人教版初中數(shù)學(xué)公式大全13一、常用數(shù)學(xué)公式之三角函數(shù)公式半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB二、初中數(shù)學(xué)正方形定理公式關(guān)于正方形定理公式的內(nèi)容精講知識,希望同學(xué)們很好的掌握下面的內(nèi)容。正方形定理公式特征:①正方形的四邊相等;②正方形的四個角都是直角;③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;判定:①有一個角是直角的菱形是正方形;②有一組鄰邊相等的矩形是正方形。三、初中數(shù)學(xué)平行四邊形定理公式同學(xué)們認(rèn)真學(xué)習(xí),下面是老師對數(shù)學(xué)中平行四邊形定理公式的內(nèi)容講解。平行四邊形性質(zhì):①平行四邊形的對邊相等;②平行四邊形的對角相等;③平行四邊形的對角線互相平分;判定:①兩組對角分別相等的四邊形是平行四邊形;②兩組對邊分別相等的四邊形是平行四邊形;③對角線互相平分的四邊形是平行四邊形;④一組對邊平行且相等的四邊形是平行四邊形。四、初中數(shù)學(xué)直角三角形定理公式下面是對直角三角形定理公式的內(nèi)容講解,希望給同學(xué)們的學(xué)習(xí)很好的’幫助。性質(zhì):①直角三角形的兩個銳角互為余角;②直角三角形斜邊上的中線等于斜邊的一半;③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);④直角三角形中30度角所對的直角邊等于斜邊的一半;判定:①有兩個角互余的三角形是直角三角形;②如果三角形的三邊長a、b、c有下面關(guān)系a+b=c,那么這個三角形是直角三角形(勾股定理的逆定理)。五、初中數(shù)學(xué)等腰三角形的性質(zhì)定理公式下面是對等腰三角形的性質(zhì)定理公式的內(nèi)容學(xué)習(xí),希望同學(xué)們認(rèn)真看看。性質(zhì):①等腰三角形的兩個底角相等;②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)六、初中數(shù)學(xué)三角形定理公式對于三角形定理公式的學(xué)習(xí),我們做下面的內(nèi)容講解學(xué)習(xí)哦。三角形三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的三條角平分線交于一點(diǎn)(內(nèi)心);三角形的三邊的垂直平分線交于一點(diǎn)(外心);三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;以上對三角形定理公式的內(nèi)容講解學(xué)習(xí),希望同學(xué)們都能很好的掌握,并在考試中取得很好的成績哦。人教版初中數(shù)學(xué)公式大全14平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似三角形相似定理1相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)2直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似3判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)4判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)5定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似6性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比7性質(zhì)定理2相似三角形周長的比等于相似比三角形相似定理考點(diǎn)歸納:相似三角形面積的比等于相似比的平方。正方形定理公式正方形的特征:①正方形的四邊相等;②正方形的四個角都是直角;③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;正方形的判定:①有一個角是直角的菱形是正方形;②有一組鄰邊相等的矩形是正方形。希望上面對正方形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會取得很好的成績的哦。平行四邊形平行四邊形的性質(zhì):①平行四邊形的對邊相等;②平行四邊形的對角相等;③平行四邊形的.對角線互相平分;平行四邊形的判定:①兩組對角分別相等的四邊形是平行四邊形;②兩組對邊分別相等的四邊形是平行四邊形;③對角線互相平分的四邊形是平行四邊形;④一組對邊平行且相等的四邊形是平行四邊形。直角三角形的性質(zhì):①直角三角形的兩個銳角互為余角;②直角三角形斜邊上的中線等于斜邊的一半;③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);④直角三角形中30度角所對的直角邊等于斜邊的一半;直角三角形的判定:①有兩個角互余的三角形是直角三角形;②如果三角形的三邊長a、b、c有下面關(guān)系a+b=c,那么這個三角形是直角三角形(勾股定理的逆定理)。等腰三角形的性質(zhì):①等腰三角形的兩個底角相等;②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)三角形三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的三條角平分線交于一點(diǎn)(內(nèi)心);三角形的三邊的垂直平分線交于一點(diǎn)(外心);三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;人教版初中數(shù)學(xué)公式大全15余割函數(shù)要領(lǐng):對于任意一個實(shí)數(shù)x,都對應(yīng)著唯一的角(弧度制中等于這個實(shí)數(shù)),而這個角又對應(yīng)著唯一確定的余割值cscx與它對應(yīng),按照這個對應(yīng)法則建立的函數(shù)稱為余割函數(shù)。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度勞動合同解除與離職員工離職手續(xù)辦理及經(jīng)濟(jì)補(bǔ)償合同3篇
- 2025年度鋼結(jié)構(gòu)加固施工承包合同模板
- 2025年度農(nóng)村個人耕地租賃與農(nóng)業(yè)信息化建設(shè)合同3篇
- 農(nóng)村農(nóng)業(yè)勞務(wù)用工合同(2025年度)勞動權(quán)益維護(hù)協(xié)議
- 2025年度農(nóng)村集體土地租賃合同范本(鄉(xiāng)村旅游)
- 二零二五年度高速鐵路信號系統(tǒng)安裝合同安裝協(xié)議3篇
- 寵物生活館2025年度寄養(yǎng)及美容服務(wù)合同3篇
- 二零二五年度員工職務(wù)秘密及保密信息處理協(xié)議3篇
- 2025年度年度文化產(chǎn)業(yè)發(fā)展合伙人合同協(xié)議書3篇
- 2025年度養(yǎng)殖場勞務(wù)合同(畜禽疫病防控與治療)3篇
- 針灸推拿治療失眠PPT
- ISO-8467-1993高錳酸鹽指數(shù)
- 防雷和接地監(jiān)理實(shí)施細(xì)則-
- 糧食倉儲組織架構(gòu)設(shè)計及全套管理規(guī)章制度
- 《人員素質(zhì)測評理論與方法》電子版本
- 陶瓷色料的技術(shù)PPT課件
- 幼兒園食品安全工作計劃四篇
- 課程設(shè)計YA32-350型四柱萬能液壓機(jī)液壓系統(tǒng)設(shè)計
- 中國工業(yè)數(shù)據(jù)庫介紹
- 弱電智能化設(shè)計服務(wù)建議書(共35頁)
- 中國銀監(jiān)會關(guān)于規(guī)范中長期貸款還款方式的通知
評論
0/150
提交評論