下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Feature
HOWCLOSEISAI
N-?EL
LargelanguagemodelssuchasOpenAI’so1have
electrifiedthedebateoverachievingartificialgeneralintelligence.Buttheyareunlikelytoreachthis
milestoneontheirown.ByAnilAnanthaswamy
O
penAI’slatestartificialintelligence(AI)systemdroppedinSeptemberwithaboldpromise.Thecom-panybehindthechatbotChatGPTshowcasedo1—itslatestsuiteoflargelanguagemodels(LLMs)—ashavinga“newlevelofAIcapability”.OpenAI,whichisbasedinSanFran-
cisco,California,claimsthato1worksinawaythatisclosertohowapersonthinksthandopreviousLLMs.
Thereleasepouredfreshfuelonadebatethat’sbeensimmeringfordecades:justhowlongwillitbeuntilamachineiscapableofthewholerangeofcognitivetasksthathumanbrainscanhandle,includinggeneralizingfromonetasktoanother,abstractreasoning,plan-ningandchoosingwhichaspectsoftheworldtoinvestigateandlearnfrom?
Suchan‘a(chǎn)rtificialgeneralintelligence’,orAGI,couldtacklethornyproblems,includingclimatechange,pandemicsandcuresforcan-cer,Alzheimer’sandotherdiseases.Butsuchhugepowerwouldalsobringuncertainty—andposeriskstohumanity.“Badthingscould
happenbecauseofeitherthemisuseofAIorbecausewelosecontrolofit,”saysYoshuaBengio,adeep-learningresearcherattheUniversityofMontreal,Canada.
TherevolutioninLLMsoverthepastfewyearshaspromptedspeculationthatAGImightbetantalizinglyclose.ButgivenhowLLMsarebuiltandtrained,theywillnotbesufficienttogettoAGIontheirown,someresearcherssay.“Therearestillsomepiecesmissing,”saysBengio.
What’sclearisthatquestionsaboutAGIarenowmorerelevantthanever.“Mostofmylife,IthoughtpeopletalkingaboutAGIarecrack-pots,”saysSubbaraoKambhampati,acomputerscientistatArizonaStateUniversityinTempe.“Now,ofcourse,everybodyistalkingaboutit.Youcan’tsayeverybody’sacrackpot.”
WhytheAGIdebatechanged
Thephraseartificialgeneralintelligenceenteredthezeitgeistaround2007afteritsmentioninaneponymouslynamedbookeditedbyAIresearchersBenGoertzelandCassioPennachin.Itsprecisemeaningremains
elusive,butitbroadlyreferstoanAIsystemwithhuman-likereasoningandgeneralizationabilities.Fuzzydefinitionsaside,formostofthehistoryofAI,it’sbeenclearthatwehaven’tyetreachedAGI.TakeAlphaGo,theAIprogramcreatedbyGoogleDeepMindtoplaytheboardgameGo.Itbeatstheworld’sbesthumanplay-ersatthegame—butitssuperhumanqualitiesarenarrow,becausethat’sallitcando.
ThenewcapabilitiesofLLMshaveradicallychangedthelandscape.Likehumanbrains,LLMshaveabreadthofabilitiesthathavecausedsomeresearcherstoseriouslycon-sidertheideathatsomeformofAGImightbeimminent1,orevenalreadyhere.
Thisbreadthofcapabilitiesisparticularlystartlingwhenyouconsiderthatresearch-ersonlypartiallyunderstandhowLLMsachieveit.AnLLMisaneuralnetwork,amachine-learningmodellooselyinspiredbythebrain;thenetworkconsistsofartificialneurons,orcomputingunits,arrangedinlay-ers,withadjustableparametersthatdenotethestrengthofconnectionsbetweentheneurons.Duringtraining,themostpowerful
22|Nature|Vol636|5December2024
ILLUSTRATIONBYPETRAPéTERFFY
LLMs—suchaso1,Claude(builtbyAnthropicinSanFrancisco)andGoogle’sGemini—relyonamethodcallednexttokenprediction,inwhichamodelisrepeatedlyfedsamplesoftextthathasbeenchoppedupintochunksknownastokens.Thesetokenscouldbeentirewordsorsimplyasetofcharacters.Thelasttokeninasequenceishiddenor‘masked’andthemodelisaskedtopredictit.Thetrainingalgorithmthencomparesthepredictionwiththemaskedtokenandadjuststhemodel’sparameterstoenableittomakeabetterpredictionnexttime.Theprocesscontinues—typicallyusing
YOUDON’TSEETHATKINDOFAUTHENTICAGENCYINLARGE
LANGUAGEMODELS.”
billionsoffragmentsoflanguage,scientifictextandprogrammingcode—untilthemodelcanreliablypredictthemaskedtokens.Bythisstage,themodelparametershavecapturedthestatisticalstructureofthetrainingdata,andtheknowledgecontainedtherein.Theparametersarethenfixedandthemodelusesthemtopre-dictnewtokenswhengivenfreshqueriesor‘prompts’thatwerenotnecessarilypresentinitstrainingdata,aprocessknownasinference. Theuseofatypeofneuralnetworkarchitec-tureknownasatransformerhastakenLLMssignificantlybeyondpreviousachievements.Thetransformerallowsamodeltolearnthatsometokenshaveaparticularlystronginfluenceonothers,eveniftheyarewidelyseparatedinasampleoftext.ThispermitsLLMstoparselanguageinwaysthatseemtomimichowhumansdoit—forexample,dif-ferentiatingbetweenthetwomeaningsoftheword‘bank’inthissentence:“Whentheriver’sbankflooded,thewaterdamagedthebank’sATM,makingitimpossibletowithdrawmoney.” Thisapproachhasturnedouttobehighlysuccessfulinawidearrayofcontexts,
includinggeneratingcomputerprogramstosolveproblemsthataredescribedinnaturallanguage,summarizingacademicarticlesandansweringmathematicsquestions.
Andothernewcapabilitieshaveemergedalongtheway,especiallyasLLMshaveincreasedinsize,raisingthepossibilitythatAGI,too,couldsimplyemergeifLLMsgetbigenough.Oneexampleischain-of-thought(CoT)prompting.ThisinvolvesshowinganLLManexampleofhowtobreakdownaproblemintosmallerstepstosolveit,orsimplyaskingtheLLMtosolveaproblemstep-by-step.CoTpromptingcanleadLLMstocorrectlyanswerquestionsthatpreviouslyflummoxedthem.Buttheprocessdoesn’tworkverywellwithsmallLLMs.
ThelimitsofLLMs
CoTpromptinghasbeenintegratedintotheworkingsofo1,accordingtoOpenAI,andunderliesthemodel’sprowess.FrancoisChollet,whowasanAIresearcheratGoogleinMountainView,California,andleftinNovembertostartanewcompany,thinks
Nature|Vol636|5December2024|23
Feature
thatthemodelincorporatesaCoTgeneratorthatcreatesnumerousCoTpromptsforauserqueryandamechanismtoselectagoodpromptfromthechoices.Duringtraining,o1istaughtnotonlytopredictthenexttoken,butalsotoselectthebestCoTpromptforagivenquery.TheadditionofCoTreasoningexplainswhy,forexample,o1-preview—theadvancedversionofo1—correctlysolved83%ofprob-lemsinaqualifyingexamfortheInternationalMathematicalOlympiad,aprestigiousmathe-maticscompetitionforhigh-schoolstudents,accordingtoOpenAI.Thatcompareswithascoreofjust13%forthecompany’spreviousmostpowerfulLLM,GPT-4o.
But,despitesuchsophistication,o1hasitslimitationsanddoesnotconstituteAGI,sayKambhampatiandChollet.Ontasksthatrequireplanning,forexample,Kambhampati’steamhasshownthatalthougho1performsadmirablyontasksthatrequireupto16plan-ningsteps,itsperformancedegradesrapidlywhenthenumberofstepsincreasestobetween20and40(ref.2).Cholletsawsimilarlimita-tionswhenhechallengedo1-previewwithatestofabstractreasoningandgeneralizationthathedesignedtomeasureprogresstowardsAGI.Thetesttakestheformofvisualpuzzles.Solvingthemrequireslookingatexamplestodeduceanabstractruleandusingthattosolvenewinstancesofasimilarpuzzle,somethinghumansdowithrelativeease.
LLMs,saysChollet,irrespectiveoftheirsize,arelimitedintheirabilitytosolveproblemsthatrequirerecombiningwhattheyhavelearnttotacklenewtasks.“LLMscannottrulyadapttonoveltybecausetheyhavenoabilitytobasicallytaketheirknowledgeandthendoafairlysophisticatedrecombinationofthatknowledgeontheflytoadapttonewcontext.”
CanLLMsdeliverAGI?
So,willLLMseverdeliverAGI?Onepointintheirfavouristhattheunderlyingtransformerarchitecturecanprocessandfindstatisticalpatternsinothertypesofinformationinadditiontotext,suchasimagesandaudio,providedthatthereisawaytoappropriatelytokenizethosedata.AndrewWilson,whostudiesmachinelearningatNewYorkUni-versityinNewYorkCity,andhiscolleaguesshowedthatthismightbebecausethedif-ferenttypesofdataallshareafeature:suchdatasetshavelow‘Kolmogorovcomplexity’,definedasthelengthoftheshortestcomputerprogramthat’srequiredtocreatethem3.Theresearchersalsoshowedthattransformersarewell-suitedtolearningaboutpatternsindatawithlowKolmogorovcomplexityandthatthissuitabilitygrowswiththesizeofthemodel.Transformershavethecapacitytomodelawideswatheofpossibilities,increasingthechancethatthetrainingalgorithmwilldiscoveranappropriatesolutiontoaproblem,andthis‘expressivity’increaseswithsize.Theseare,
saysWilson,“someoftheingredientsthatwereallyneedforuniversallearning”.AlthoughWilsonthinksAGIiscurrentlyoutofreach,hesaysthatLLMsandotherAIsystemsthatusethetransformerarchitecturehavesomeofthekeypropertiesofAGI-likebehaviour.
Yettherearealsosignsthattransformer-basedLLMshavelimits.Forastart,thedatausedtotrainthemodelsarerunningout.ResearchersatEpochAI,aninstituteinSanFranciscothatstudiestrendsinAI,estimate4thattheexistingstockofpubliclyavailabletextualdatausedfortrainingmightrunoutsomewherebetween2026and2032.TherearealsosignsthatthegainsbeingmadebyLLMs
HUMANSAND
OTHERANIMALS
AREAPROOFOF
PRINCIPLETHAT
YOUCANGETTHERE.”
astheygetbiggerarenotasgreatastheyoncewere,althoughit’snotclearifthisisrelatedtotherebeinglessnoveltyinthedatabecausesomanyhavenowbeenused,orsomethingelse.ThelatterwouldbodebadlyforLLMs.
RaiaHadsell,vice-presidentofresearchatGoogleDeepMindinLondon,raisesanotherproblem.Thepowerfultransformer-basedLLMsaretrainedtopredictthenexttoken,butthissingularfocus,sheargues,istoolimitedtodeliverAGI.BuildingmodelsthatinsteadgeneratesolutionsallatonceorinlargechunkscouldbringusclosertoAGI,shesays.Thealgorithmsthatcouldhelptobuildsuchmodelsarealreadyatworkinsomeexisting,non-LLMsystems,suchasOpenAI’sDALL-E,whichgeneratesrealistic,sometimestrippy,imagesinresponsetodescriptionsinnaturallanguage.ButtheylackLLMs’broadsuiteofcapabilities.
Buildmeaworldmodel
TheintuitionforwhatbreakthroughsareneededtoprogresstoAGIcomesfromneuroscientists.Theyarguethatourintelli-genceistheresultofthebrainbeingabletobuilda‘worldmodel’,arepresentationofoursurroundings.Thiscanbeusedtoimaginedifferentcoursesofactionandpredicttheirconsequences,andthereforetoplanandrea-son.Itcanalsobeusedtogeneralizeskillsthathavebeenlearntinonedomaintonewtasksbysimulatingdifferentscenarios.
Severalreportshaveclaimedevidencefortheemergenceofrudimentaryworldmodels
insideLLMs.Inonestudy5,researchersWesGurneeandMaxTegmarkattheMassachusettsInstituteofTechnologyinCambridgeclaimedthatawidelyusedopen-sourcefamilyofLLMsdevelopedinternalrepresentationsoftheworld,theUnitedStatesandNewYorkCitywhentrainedondatasetscontaininginfor-mationabouttheseplaces,althoughotherresearchersnotedonX(formerlyTwitter)thattherewasnoevidencethattheLLMswereusingtheworldmodelforsimulationsortolearncausalrelationships.Inanotherstudy6,KennethLi,acomputerscientistatHarvardUniversityinCambridgeandhiscolleaguesreportedevi-dencethatasmallLLMtrainedontranscriptsofmovesmadebyplayersoftheboardgameOthellolearnttointernallyrepresentthestateoftheboardandusedthistocorrectlypredictthenextlegalmove.
Otherresults,however,showhowworldmodelslearntbytoday’sAIsystemscanbeunreliable.Inonesuchstudy7,computersci-entistKeyonVafaatHarvardUniversity,andhiscolleaguesusedagiganticdatasetoftheturnstakenduringtaxiridesinNewYorkCitytotrainatransformer-basedmodeltopredictthenextturninasequence,whichitdidwithalmost100%accuracy.
Byexaminingtheturnsthemodelgener-ated,theresearcherswereabletoshowthatithadconstructedaninternalmaptoarriveatitsanswers.Butthemapborelittleresem-blancetoManhattan(see‘TheimpossiblestreetsofAI’),“containingstreetswithimpos-siblephysicalorientationsandflyoversaboveotherstreets”,theauthorswrite.“Althoughthemodeldoesdowellinsomenavigationtasks,it’sdoingwellwithanincoherentmap,”saysVafa.Andwhentheresearcherstweakedthetestdatatoincludeunforeseendetoursthatwerenotpresentinthetrainingdata,itfailedtopredictthenextturn,suggestingthatitwasunabletoadapttonewsituations.
Theimportanceoffeedback
Oneimportantfeaturethattoday’sLLMslackisinternalfeedback,saysDileepGeorge,amemberoftheAGIresearchteamatGoogleDeepMindinMountainView,California.Thehumanbrainisfulloffeedbackconnectionsthatallowinformationtoflowbidirectionallybetweenlayersofneurons.Thisallowsinfor-mationtoflowfromthesensorysystemtohigherlayersofthebraintocreateworldmod-elsthatreflectourenvironment.Italsomeansthatinformationfromtheworldmodelscanripplebackdownandguidetheacquisitionoffurthersensoryinformation.Suchbidirec-tionalprocesseslead,forexample,topercep-tions,whereinthebrainusesworldmodelstodeducetheprobablecausesofsensoryinputs.Theyalsoenableplanning,withworldmodelsusedtosimulatedifferentcoursesofaction. ButcurrentLLMsareabletousefeedbackonlyinatacked-onway.Inthecaseofo1,the
24|Nature|Vol636|5December2024
TruestreetsinManhattan,NewYork
Non-existent‘streets’reconstructed
Directionbyanartificial-intelligencesystem
oftravel
attheDalleMolleInstituteforArtificialIntelligenceStudiesinLugano-Viganelllo,Switzerland,reported9buildinganeuralnet-workthatcouldefficientlybuildaworldmodelofanartificialenvironment,andthenuseittotraintheAItoracevirtualcars.
IfyouthinkthatAIsystemswiththislevelofautonomysoundscary,youarenotalone.AswellasresearchinghowtobuildAGI,BengioisanadvocateofincorporatingsafetyintothedesignandregulationofAIsystems.Hearguesthatresearchmustfocusontrainingmodelsthatcanguaranteethesafetyoftheirownbehaviour—forinstance,byhavingmech-anismsthatcalculatetheprobabilitythatthemodelisviolatingsomespecifiedsafetycon-straintandrejectactionsiftheprobabilityistoohigh.Also,governmentsneedtoensuresafeuse.“Weneedademocraticprocessthatmakessureindividuals,corporations,eventhemilitary,useAIanddevelopAIinwaysthataregoingtobesafeforthepublic,”hesays.
SOURCE:REF.7
THEIMPOSSIBLESTREETSOFAI
Theabilitytobuildrepresentationsofour
environment,calledworldmodels,helpshumansto
reasonandplan.ItisthoughtthatAIsystemswillneedthiscapacity,too,iftheyaretodevelophuman-level
intelligence.InthecaseofanAIsystemthatwas
trainedtopredictroutestakenbytaxisinManhattan,NewYork,itsinternalmapdidnotresemblethereal
world.Inlatertesting,thisledtoaninabilitytohandledetoursthatwerenotpresentinthetrainingdata.
TheAIsystem’smap
containsstreetswith
impossibleorientations
andbridgesthatdon’texist.
SowilliteverbepossibletoachieveAGI?Computerscientistssaythereisnoreasontothinkotherwise.“Therearenotheoreticalimpediments,”saysGeorge.MelanieMitchell,acomputerscientistattheSantaFeInstituteinNewMexico,agrees.“Humansandsomeotheranimalsareaproofofprinciplethatyoucangetthere,”shesays.“Idon’tthinkthere’sanythingparticularlyspecialaboutbiologicalsystemsversussystemsmadeofothermaterialsthatwould,inprinciple,preventnon-biologicalsystemsfrombecomingintelligent.”
internalCoTpromptingthatseemstobeatwork—inwhichpromptsaregeneratedtohelpansweraqueryandfedbacktotheLLMbeforeitproducesitsfinalanswer—isaformoffeed-backconnectivity.But,asseenwithChollet’stestsofo1,thisdoesn’tensurebullet-proofabstractreasoning.
Researchers,includingKambhampati,havealsoexperimentedwithaddingexternalmod-ules,calledverifiers,ontoLLMs.ThesecheckanswersthataregeneratedbyanLLMinaspe-cificcontext,suchasforcreatingviabletravelplans,andasktheLLMtorerunthequeryiftheanswerisnotuptoscratch8.Kambhampati’steamshowedthatLLMsaidedbyexternalverifi-erswereabletocreatetravelplanssignificantlybetterthanwerevanillaLLMs.Theproblemisthatresearchershavetodesignbespokeverifi-ersforeachtask.“Thereisnouniversalverifier,”saysKambhampati.Bycontrast,anAGIsystemthatusedthisapproachwouldprobablyneedtobuilditsownverifierstosuitsituationsastheyarise,inmuchthesamewaythathumanscanuseabstractrulestoensuretheyarereasoningcorrectly,evenfornewtasks.
EffortstousesuchideastohelpproducenewAIsystemsareintheirinfancy.Bengio,forexample,isexploringhowtocreateAIsys-temswithdifferentarchitecturestotoday’stransformer-basedLLMs.Oneofthese,which
useswhathecallsgenerativeflownetworks,wouldallowasingleAIsystemtolearnhowtosimultaneouslybuildworldmodelsandthemodulesneededtousethemforreasoningandplanning.
AnotherbighurdleencounteredbyLLMsisthattheyaredataguzzlers.KarlFriston,athe-oreticalneuroscientistatUniversityCollegeLondon,suggeststhatfuturesystemscouldbemademoreefficientbygivingthemtheabilitytodecidejusthowmuchdatatheyneedtosam-plefromtheenvironmenttoconstructworldmodelsandmakereasonedpredictions,ratherthansimplyingestingallthedatatheyarefed.This,saysFriston,wouldrepresentaformofagencyorautonomy,whichmightbeneededforAGI.“Youdon’tseethatkindofauthen-ticagency,insay,largelanguagemodels,orgenerativeAI,”hesays.“Ifyou’vegotanykindofinte
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度大數(shù)據(jù)分析處理個(gè)人勞務(wù)合同3篇
- 2025年浙江嘉興市海寧市城投集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 二零二五年度鞋類產(chǎn)品回收與再利用技術(shù)研究合同3篇
- 2025年度個(gè)人健康保險(xiǎn)連帶擔(dān)保協(xié)議4篇
- 2025年遼寧鞍山國(guó)家高新技術(shù)產(chǎn)業(yè)開(kāi)發(fā)區(qū)國(guó)有企業(yè)招聘筆試參考題庫(kù)附帶答案詳解
- 2025年度個(gè)人果園生態(tài)旅游開(kāi)發(fā)與承包經(jīng)營(yíng)合同4篇
- 二零二五年度綠色能源貸款擔(dān)保服務(wù)協(xié)議4篇
- 二零二五年度門(mén)窗五金件行業(yè)人才培養(yǎng)與引進(jìn)合同4篇
- 二零二五年度民辦學(xué)校學(xué)生宿舍維修與設(shè)施更新合同4篇
- 2025年度智能門(mén)禁系統(tǒng)節(jié)能環(huán)保改造合同文檔4篇
- 第22單元(二次函數(shù))-單元測(cè)試卷(2)-2024-2025學(xué)年數(shù)學(xué)人教版九年級(jí)上冊(cè)(含答案解析)
- 藍(lán)色3D風(fēng)工作總結(jié)匯報(bào)模板
- 安全常識(shí)課件
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末聯(lián)考化學(xué)試題(含答案)
- 2024年江蘇省導(dǎo)游服務(wù)技能大賽理論考試題庫(kù)(含答案)
- 2024年中考英語(yǔ)閱讀理解表格型解題技巧講解(含練習(xí)題及答案)
- 新版中國(guó)食物成分表
- 浙江省溫州市溫州中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析
- 2024年山東省青島市中考生物試題(含答案)
- 保安公司市場(chǎng)拓展方案-保安拓展工作方案
- GB/T 15843.2-2024網(wǎng)絡(luò)安全技術(shù)實(shí)體鑒別第2部分:采用鑒別式加密的機(jī)制
評(píng)論
0/150
提交評(píng)論