版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年統(tǒng)編版2024高三數(shù)學(xué)上冊月考試卷189考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、若函數(shù),則f(f(1))的值為()A.-1B.0C.1D.22、如圖給出的是計(jì)算++++的值的程序框圖,其中判斷框內(nèi)應(yīng)填入的是()A.i≤2012B.i>2012C.i≤1006D.i>10063、已知sinx-cosx=(0≤x<π),則tanx等于()A.-B.-C.D.4、A={x||x-1|≥1,x∈R},B={x|log2x>1,x∈R},則“x∈A”是“x∈B”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分也非必要條件5、f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),(x2+1)f′(x)+2xf(x)<0,且f(-1)=0,則不等式f(x)>0的解集是()A.(1,+∞)B.(-1,0)∪(1,+∞)C.(-∞,-1)D.(-∞,-1)∪(0,1)6、已知集合A={-2;-1,0,1,2},集合B={x∈Z||x|≤a},則滿足A?B的實(shí)數(shù)a可以取的一個(gè)值為()
A.0
B.1
C.2
D.3
7、若直線與圓的兩個(gè)交點(diǎn)關(guān)于直線對(duì)稱,則的值分別為A.B.C.D.評(píng)卷人得分二、填空題(共8題,共16分)8、在△ABC中,∠C=,c=,則△ABC的面積的最大值為____.9、函數(shù)y=cos2x-sin2x+2sinxcosx的最小值是____.10、設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=6,S4=12,則S6=____.11、已知函數(shù),等比數(shù)列{an}的前n項(xiàng)和為Sn=f(n)-c,則an的最小值為____.12、函數(shù)y=loga(x-1)+2(a>0,a≠1)的圖象恒過一定點(diǎn)是____.13、如圖,該程序運(yùn)行后輸出的結(jié)果為____.14、設(shè)D是棱長為4的正四面體P1P2P3P4及其內(nèi)部的點(diǎn)構(gòu)成的集合,點(diǎn)P是正四面體P1P2P3P4的中心,若集合S={P∈D||PP|≤|PPi|,i=1,2,3,4},則集合S表示的區(qū)域的體積是____.15、已知tan(α+)=3,tanβ=2,則tan(α﹣β)=____.評(píng)卷人得分三、判斷題(共5題,共10分)16、函數(shù)y=sinx,x∈[0,2π]是奇函數(shù).____(判斷對(duì)錯(cuò))17、已知函數(shù)f(x)=4+ax-1的圖象恒過定點(diǎn)p,則點(diǎn)p的坐標(biāo)是(1,5)____.(判斷對(duì)錯(cuò))18、函數(shù)y=sinx,x∈[0,2π]是奇函數(shù).____(判斷對(duì)錯(cuò))19、已知A={x|x=3k-2,k∈Z},則5∈A.____.20、若b=0,則函數(shù)f(x)=(2k+1)x+b在R上必為奇函數(shù)____.評(píng)卷人得分四、作圖題(共1題,共4分)21、已知拋物線C:y2=4x的焦點(diǎn)為F,直線l過點(diǎn)F且其傾斜角為45°,設(shè)直線l與曲線C相交于A、B兩點(diǎn),求以線段AB為直徑的圓的標(biāo)準(zhǔn)方程.評(píng)卷人得分五、證明題(共4題,共40分)22、如圖;四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點(diǎn)F,且點(diǎn)F在CE上.
(Ⅰ)求證:AE⊥BE;
(Ⅱ)求點(diǎn)F到平面ABC的距離.23、用分析法證明不等式:設(shè)x≥5,求證:-<-.24、如圖,已知正方體ABCD-A1B1C1D1
(1)求證:CD∥平面ABC1D1
(2)求證:B1C⊥平面ABC1D1.25、求證:定義在實(shí)數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個(gè)公共點(diǎn).評(píng)卷人得分六、綜合題(共3題,共12分)26、已知;在多面體EF-ABCD中,已知ABCD是邊長為4的正方形,EF=2,EF∥AB,平面FBC⊥平面ABCD,M,N分別是AB,CD的中點(diǎn).
(1)求證:平面MNE∥平面BCF;
(2)若在△BCF中,CF=;BC邊上的高FH=3,求二面角E-AD-B的余弦值.
27、已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足Sn=an.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)將數(shù)列{an}的項(xiàng)按上小下大,左小右大的原則排列成一個(gè)如圖所示的三角形數(shù)陣,那么2015是否在該數(shù)陣中,若在,排在了第幾行第幾列?28、已知函數(shù)f(x)滿足f(logax)=;a>0且a≠1
(1)求f(x)的解析式;并判斷f(x)的奇偶性;
(2)討論f(x)的單調(diào)性.參考答案一、選擇題(共7題,共14分)1、B【分析】【分析】求出f(1)的值,從而求出f(f(1))=f(0)的值即可.【解析】【解答】解:f(1)==0;
∴f(f(1))=f(0)=-30+1=0;
故選:B.2、A【分析】【分析】根據(jù)流程圖寫出每次循環(huán)i,S的值,結(jié)合程序功能是++++比較即可確定退出循環(huán)的條件,得到答案.【解析】【解答】解:根據(jù)流程圖;可知。
第1次循環(huán):i=2,S=;
第2次循環(huán):i=4,S=+;
第3次循環(huán):i=6,S=++;
第1006次循環(huán):i=2012,S=++++;
此時(shí);應(yīng)退出循環(huán),輸出S的值.
故判斷框內(nèi)可填入i≤2012.
故選:A3、D【分析】【分析】由條件利用同角三角函數(shù)的基本關(guān)系求得tanx的值,再根據(jù)x為銳角,且tanx>1,進(jìn)一步確定tanx的值.【解析】【解答】解:∵sinx-cosx=(0≤x<π),平方可得1-2sinxcosx=;
即sinxcosx=,即==,求得tanx=,或tanx=.
再根據(jù)條件可得,x為銳角,且sinx>cosx,故tanx>1,故tanx=;
故選:D.4、B【分析】【分析】根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.【解析】【解答】解:A={x||x-1|≥1;x∈R}={x|x≥2或x≤0};
B={x|log2x>1;x∈R}={x|x>2};
則B?A;
則“x∈A”是“x∈B”的必要不充分條件;
故選:B5、D【分析】【分析】根據(jù)積函數(shù)的求導(dǎo)法則可知F(x)=(x2+1)f(x),依題意可知可判斷函數(shù)F(x)=(x2+1)f(x)在(0,+∞)內(nèi)單調(diào)遞減;再由f(-1)=f(1)=0,易得f(x)在(0,+∞)內(nèi)的正負(fù)性;最后結(jié)合奇函數(shù)的圖象特征,可得f(x)在(-∞,0)內(nèi)的正負(fù)性.則f(x)>0的解集即可求得【解析】【解答】解:令F(x)=(x2+1)f(x);
則F′(x)=(x2+1)f′(x)+2xf(x);
∵當(dāng)x>0時(shí),(x2+1)f′(x)+2xf(x)<0;
∴當(dāng)x>0時(shí);F′(x)<0;
∴F(x)=(x2+1)f(x)在(0;+∞)上單調(diào)遞減;
∵f(x)是定義在R上的奇函數(shù);f(-1)=0;
∴f(1)=0;
∴當(dāng)0<x<1時(shí),F(xiàn)(x)=(x2+1)f(x)>0;
∴f(x)>0;①
又F(-x)=(x2+1)f(-x)=-(x2+1)f(x)=-F(x);
∴F(x)=(x2+1)f(x)為奇函數(shù),又x>0時(shí),F(xiàn)(x)=(x2+1)f(x)在(0;+∞)上單調(diào)遞減;
∴x<0時(shí),F(xiàn)(x)=(x2+1)f(x)在(-∞;0)上單調(diào)遞減;
∵f(-1)=0;
∴當(dāng)x<-1時(shí),F(xiàn)(x)=(x2+1)f(x)>0;從而f(x)>0;②
由①②得:0<x<1或x<-1時(shí)f(x)>0.
∴不等式f(x)>0的解集是(0;1)∪(-∞,-1).
故選D.6、D【分析】
B={x∈Z||x|≤a}={x∈Z|-a≤x≤a}
A?B說明A是B的真子集;則元素-2,-1,0,1,2都在集合B中。
從而滿足A?B的實(shí)數(shù)a的取值范圍是a>2
則滿足A?B的實(shí)數(shù)a可以取的一個(gè)值為3
故選D
【解析】【答案】先求出集合B;然后根據(jù)A?B求出a的范圍,最后找出一個(gè)滿足條件的a即可.
7、A【分析】【解析】試題分析:因?yàn)橹本€y=kx與圓(x-2)2+y2=1的兩個(gè)交點(diǎn)關(guān)于直線2x+y+b=0對(duì)稱,直線2x+y+b=0的斜率為-2,所以k=并且直線經(jīng)過圓的圓心,所以圓心(2,0)在直線2x+y+b=0上,所以4+0+b=0,b=-4.故選A.考點(diǎn):直線與圓的位置關(guān)系;關(guān)于點(diǎn)、直線對(duì)稱的圓的方程.【解析】【答案】A二、填空題(共8題,共16分)8、略
【分析】【分析】運(yùn)用解直角三角形,可得a=csinA=sinA=cosB,由三角形的面積公式和正弦函數(shù)的值域,計(jì)算即可得到最大值.【解析】【解答】解:由∠C=,c=;
可得A+B=;
則a=csinA=sinA=cosB;
即有△ABC的面積S=acsinB
=??cosBsinB
=sin2B≤;
當(dāng)且僅當(dāng)B=,取得最大值.
故答案為:.9、略
【分析】【分析】利用二倍角公式以及兩角和的正弦函數(shù),化簡函數(shù)的表達(dá)式,然后求解函數(shù)的最值.【解析】【解答】解:函數(shù)y=cos2x-sin2x+2sinxcosx=cos2x+sin2x=sin(2x).
故答案為:-.10、略
【分析】【分析】由題意和求和公式可得a1和d的方程組,解方程組代入求和公式計(jì)算可得.【解析】【解答】解:設(shè)等差數(shù)列{an}的公差為d;
則S3=3a1+d=6,S4=4a1+d=12;
解得a1=0;d=2
∴S6=6a1+d=30
故答案為:3011、略
【分析】【分析】根據(jù)題意:“等比數(shù)列{an}的前n項(xiàng)和為Sn=f(n)-c,”得Sn=-c,從而得出等比數(shù)列的首項(xiàng)和公比,進(jìn)一步得出通項(xiàng)公式an,從而有數(shù)列{an}是遞增數(shù)列,當(dāng)n=1時(shí),an最?。窘馕觥俊窘獯稹拷猓河捎诘缺葦?shù)列{an}的前n項(xiàng)和為Sn=f(n)-c;
即Sn=-c;
∴a1=S1=-c,a2=S2-S1=-=-,a3=S3-S2=-=-;
根據(jù)等比數(shù)列的定義,得(-)2=(-c)(-)
∴c=1;
a1=-,q=;
從而an=-?=-2,n∈N*;
∴數(shù)列{an}是遞增數(shù)列,當(dāng)n=1時(shí),an最小,最小值為-.
故答案為:.12、(2,2)【分析】【分析】本題考查的對(duì)數(shù)函數(shù)圖象的性質(zhì),由對(duì)數(shù)函數(shù)恒過定點(diǎn)(1,0),再根據(jù)函數(shù)平移變換的公式,結(jié)合平移向量公式即可得到到正確結(jié)論.【解析】【解答】解:由函數(shù)圖象的平移公式;我們可得:
將函數(shù)y=logax(a>0;a≠1)的圖象向右平移一個(gè)單位,再向上平移2個(gè)單位。
即可得到函數(shù)y=loga(x-1)+2(a>0;a≠1)的圖象.
又∵函數(shù)y=logax(a>0;a≠1)的圖象恒過(1,0)點(diǎn)。
由平移向量公式,易得函數(shù)y=loga(x-1)+2(a>0;a≠1)的圖象恒過(2,2)點(diǎn)。
故答案為:(2,2)13、略
【分析】試題分析:第一次運(yùn)行得:滿足則繼續(xù)運(yùn)行;第二次運(yùn)行得:滿足則繼續(xù)運(yùn)行;第三次運(yùn)行得:不滿足則停止運(yùn)行;輸出考點(diǎn):循環(huán)結(jié)構(gòu).【解析】【答案】1614、略
【分析】
如圖所示;
分別作出過PP1、PP2、PP3、PP4的中點(diǎn)的且與各線段垂直的面;
不妨設(shè)PP1的垂面為ABC,垂足為H,若|PP|=|PP1|,則點(diǎn)P在面ABC上,若|PP|≤|PP1|,則點(diǎn)P在面ABC的與P位置相同的一側(cè).同理其它四個(gè)面也是;
則P點(diǎn)應(yīng)位于四個(gè)垂面及正四面體所圍成的區(qū)域內(nèi);
集合S表示的區(qū)域的體積是正四面體的體積減去四個(gè)相等的小正四面體的體積.
因?yàn)檎睦忮F的棱長等于4,所以高為
所以PP1=所以四面體P1-ABC的地面ABC上的高
設(shè)四面體P1-ABC的棱長為a,則a=
所以
則集合S表示的區(qū)域的體積V=.
故答案為.
【解析】【答案】由集合S={P|P∈D,|PP|≤|PPi|,i=1,2,3,4},則P點(diǎn)應(yīng)位于過PPi的中點(diǎn)的四個(gè)垂面及正四面體的四個(gè)側(cè)面之內(nèi);又由D是正四面體及其內(nèi)部的點(diǎn)構(gòu)成的集合,我們易畫出滿足條件的圖象,并判斷其形狀,最后由正四面體的體積減去四個(gè)小正四面體的體積即可.
15、﹣【分析】【解答】解:∵tan(α+)===3,解得:tanα=tanβ=2;
∴tan(α﹣β)===﹣.
故答案為:﹣.
【分析】利用特殊角的三角函數(shù)值,兩角和的正切函數(shù)公式可求tanα的值,由已知利用兩角差的正切函數(shù)公式即可計(jì)算得解tan(α﹣β)的值.三、判斷題(共5題,共10分)16、×【分析】【分析】根據(jù)奇函數(shù)的定義進(jìn)行判斷即可得到答案.【解析】【解答】解:∵x∈[0;2π],定義域不關(guān)于原點(diǎn)對(duì)稱;
故函數(shù)y=sinx不是奇函數(shù);
故答案為:×17、√【分析】【分析】已知函數(shù)f(x)=ax-1+4,根據(jù)指數(shù)函數(shù)的性質(zhì),求出其過的定點(diǎn).【解析】【解答】解:∵函數(shù)f(x)=ax-1+4;其中a>0,a≠1;
令x-1=0,可得x=1,ax-1=1;
∴f(x)=1+4=5;
∴點(diǎn)P的坐標(biāo)為(1;5);
故答案為:√18、×【分析】【分析】根據(jù)奇函數(shù)的定義進(jìn)行判斷即可得到答案.【解析】【解答】解:∵x∈[0;2π],定義域不關(guān)于原點(diǎn)對(duì)稱;
故函數(shù)y=sinx不是奇函數(shù);
故答案為:×19、×【分析】【分析】判斷5與集合A的關(guān)系即可.【解析】【解答】解:由3k-2=5得,3k=7,解得k=;
所以5?Z;所以5∈A錯(cuò)誤.
故答案為:×20、√【分析】【分析】根據(jù)奇函數(shù)的定義即可作出判斷.【解析】【解答】解:當(dāng)b=0時(shí);f(x)=(2k+1)x;
定義域?yàn)镽關(guān)于原點(diǎn)對(duì)稱;
且f(-x)=-(2k+1)x=-f(x);
所以函數(shù)f(x)為R上的奇函數(shù).
故答案為:√.四、作圖題(共1題,共4分)21、略
【分析】【分析】拋物線的方程可求得焦點(diǎn)坐標(biāo),進(jìn)而根據(jù)斜率表示出直線的方程,與拋物線的方程聯(lián)立消去y,進(jìn)而根據(jù)韋達(dá)定理表示出x1+x2,進(jìn)而圓的圓心坐標(biāo)與半徑即可.【解析】【解答】解:由題意;F(1,0),直線l的方程為y=x-1(1分)
由得,x2-6x+1=0;(2分)
設(shè)A(x1,y1),B(x2,y2),圓心D(x0,y0);半徑為R
則,y0=x0-1=2.(5分)2R=x1+x2+2=8;∴R=4.
所以,所求圓的標(biāo)準(zhǔn)方程為(x-3)2+(y-2)2=16.(8分)五、證明題(共4題,共40分)22、略
【分析】【分析】(Ⅰ)由已知得AD∥BC;AE⊥BC,BF⊥AE,由此能證明AE⊥BE.
(Ⅱ)以E為原點(diǎn),EA為x軸,EB為y軸,過E作垂直于平面ABE的直線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出點(diǎn)F到平面ABC的距離.【解析】【解答】證明:(Ⅰ)∵AD⊥平面ABE,四邊形ABCD為矩形,
∴AD∥BC;∴BC⊥平面ABE,∴AE⊥BC.
又∵BF⊥平面ACE;∴BF⊥AE;
∵BC∩BF=B;∴AE⊥平面BCE;
∵BE?平面BCE;∴AE⊥BE.
(Ⅱ)以E為原點(diǎn);EA為x軸,EB為y軸,過E作垂直于平面ABE的直線為z軸,建立空間直角坐標(biāo)系;
∵AE=EB=BC=2;BF⊥平面ACE于點(diǎn)F,且點(diǎn)F在CE上.
∴E(0;0,0),C(0,2,2),B(0,2,0),A(2,0,0);
設(shè)F(a,b,c),,則(a,b;c)=(0,2λ,2λ),∴F(0,2λ,2λ);
=(0,2λ-2,2λ),=(0;2,2);
則=2(2λ-2)+2λ?2=0,解得,∴F(0,,);
=(-2,2,0),=(-2,2,2),=(-2,);
設(shè)平面ABC的法向量=(x;y,x);
則,取x=1,得;
∴點(diǎn)F到平面ABC的距離:
d===.
∴點(diǎn)F到平面ABC的距離為.23、略
【分析】【分析】本題可利用分析法將原式逐步轉(zhuǎn)化為容易證明的不等式,再加以證明.【解析】【解答】證明:要證-<-;
只要證+<+;
只要證2<2;
只要證(x-2)(x-5)<(x-3)(x-4);
只要證10<12.
∵10<12成立;
∴原命題成立,即-<-.24、略
【分析】【分析】(1)先證明AB∥CD,又AB?平面ABC1D1,CD?平面ABC1D1,即可證明AB∥平面ABC1D1.
(2)證明B1C⊥BC1,AB⊥B1C,即可證明B1C⊥平面ABC1D1.【解析】【解答】證明:(1)∵在正方體ABCD-A1B1C1D1中,AB∥CD,
又AB?平面ABC1D1,CD?平面ABC1D1;
∴AB∥平面ABC1D1.
(2)∵在正方體ABCD-A1B1C1D1中,易知:B1C⊥BC1;
又∵AB⊥平面BC1B1C;
∴AB⊥B1C.
∵BC1∩AB=B;
∴B1C⊥平面ABC1D1.25、略
【分析】【分析】根據(jù)反證法的證題步驟:假設(shè)結(jié)論不成立,即反設(shè),再歸謬,最后導(dǎo)出矛盾,從而得到結(jié)論.【解析】【解答】證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個(gè)交點(diǎn)(2分)
設(shè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2.
因?yàn)楹瘮?shù)y=f(x)在實(shí)數(shù)集上單調(diào)遞減
所以f(x1)>f(x2);(6分)
這與f(x1)=f(x2)=0矛盾.
所以假設(shè)不成立.(12分)
故原命題成立.(14分)六、綜合題(共3題,共12分)26、略
【分析】【分析】(1)由ABCD是正方形;M;N是AB、CD中點(diǎn),得MN∥BC,從而BFEM是平行四邊形,由此能證明平面MNE∥平面BCF.
(2)過E作ET⊥MN,于T,延長HT交AD于K,作出二面角的平面角,結(jié)合三角形的邊角關(guān)系進(jìn)行求解即可.【解析】【解答】(1)證明:∵ABCD是正方形;M;N是AB、CD中點(diǎn);
∴MN∥BC;
∵M(jìn)B=2=EF;EF∥AB;
∴BFEM是平行四邊形;
∴ME∥BF;
∵M(jìn)N;ME?平面MNE,BC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專項(xiàng)鉆孔灌注樁施工合作協(xié)議2024版A版
- 2024年04月福建華夏銀行廈門分行支行行長等崗位招考筆試歷年參考題庫附帶答案詳解
- 2024綜合采購戰(zhàn)略合作協(xié)議示范文本版
- 2025年度醫(yī)療設(shè)備試用及臨床研究合作協(xié)議4篇
- 2025年不自愿離婚協(xié)議范本:房產(chǎn)分割與子女撫養(yǎng)權(quán)爭議解決方案3篇
- 2025年度創(chuàng)新創(chuàng)業(yè)基地入駐項(xiàng)目合作協(xié)議3篇
- 2024試用期勞動(dòng)合同(含績效考核標(biāo)準(zhǔn))3篇
- 2025年度電子產(chǎn)品維修配件銷售代理協(xié)議(含售后保障服務(wù))4篇
- 2025年高新技術(shù)產(chǎn)業(yè)園區(qū)廠房租賃合同協(xié)議2篇
- 2025年度茶葉深加工研發(fā)合作合同范本4篇
- 細(xì)胞庫建設(shè)與標(biāo)準(zhǔn)制定-洞察分析
- 2024年國家公務(wù)員錄用考試公共基礎(chǔ)知識(shí)復(fù)習(xí)題庫2500題及答案
- DB3309T 98-2023 登步黃金瓜生產(chǎn)技術(shù)規(guī)程
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院單招職業(yè)技能測試題庫標(biāo)準(zhǔn)卷
- DBJ41-T 108-2011 鋼絲網(wǎng)架水泥膨脹珍珠巖夾芯板隔墻應(yīng)用技術(shù)規(guī)程
- 2025年學(xué)長引領(lǐng)的讀書會(huì)定期活動(dòng)合同
- 表內(nèi)乘除法口算l練習(xí)題1200道a4打印
- 《EICC培訓(xùn)講義》課件
- 2025年四川省政府直屬事業(yè)單位招聘管理單位筆試遴選500模擬題附帶答案詳解
- 2024年物業(yè)公司服務(wù)質(zhì)量保證合同條款
- 文言文閱讀之理解實(shí)詞含義(講義)-2025年中考語文專項(xiàng)復(fù)習(xí)
評(píng)論
0/150
提交評(píng)論