廣東交通職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
廣東交通職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
廣東交通職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
廣東交通職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
廣東交通職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)廣東交通職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能在醫(yī)療影像診斷中的應(yīng)用越來(lái)越廣泛,但也存在誤診的風(fēng)險(xiǎn)。假設(shè)要提高一個(gè)基于人工智能的醫(yī)療影像診斷系統(tǒng)的準(zhǔn)確性和可靠性,以下哪種方法最為重要?()A.增加訓(xùn)練數(shù)據(jù)的多樣性B.引入人類(lèi)專(zhuān)家的監(jiān)督和反饋C.不斷更新和優(yōu)化模型D.以上方法同等重要2、在人工智能的圖像生成領(lǐng)域,生成對(duì)抗網(wǎng)絡(luò)(GAN)取得了令人矚目的成果。假設(shè)要生成逼真的藝術(shù)畫(huà)作,同時(shí)具有獨(dú)特的風(fēng)格和創(chuàng)造力。以下哪種改進(jìn)的GAN架構(gòu)或訓(xùn)練方法能夠更好地實(shí)現(xiàn)這一目標(biāo)?()A.條件GANB.循環(huán)GANC.自監(jiān)督GAND.以上方法結(jié)合使用3、人工智能中的自動(dòng)推理技術(shù)在邏輯證明、問(wèn)題求解等方面發(fā)揮著作用。假設(shè)我們要證明一個(gè)復(fù)雜的數(shù)學(xué)定理,使用自動(dòng)推理系統(tǒng)。那么,關(guān)于自動(dòng)推理,以下哪一項(xiàng)是不正確的?()A.可以基于邏輯規(guī)則和已知事實(shí)進(jìn)行推導(dǎo)B.能夠處理不確定和模糊的信息C.對(duì)于復(fù)雜問(wèn)題可能會(huì)面臨計(jì)算復(fù)雜性的挑戰(zhàn)D.其結(jié)果的正確性完全依賴(lài)于輸入的前提和規(guī)則的準(zhǔn)確性4、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個(gè)智能機(jī)器人需要在迷宮中找到出口,通過(guò)與環(huán)境的交互獲得獎(jiǎng)勵(lì)。在這種情況下,以下關(guān)于強(qiáng)化學(xué)習(xí)算法的選擇,哪一項(xiàng)是最合適的?()A.Q-learning算法,通過(guò)估計(jì)狀態(tài)-動(dòng)作值函數(shù)來(lái)選擇最優(yōu)動(dòng)作B.策略梯度算法,直接優(yōu)化策略以最大化期望回報(bào)C.蒙特卡羅方法,通過(guò)隨機(jī)采樣來(lái)估計(jì)價(jià)值函數(shù)D.以上算法都不合適,應(yīng)該選擇其他方法5、在人工智能的藝術(shù)創(chuàng)作中,以下哪種方式可能會(huì)引發(fā)關(guān)于作品原創(chuàng)性和版權(quán)的爭(zhēng)議?()A.基于已有作品的風(fēng)格進(jìn)行模仿創(chuàng)作B.使用人工智能生成全新的藝術(shù)作品C.人類(lèi)藝術(shù)家與人工智能共同創(chuàng)作D.以上都有可能6、在人工智能的研究中,模型的評(píng)估指標(biāo)對(duì)于衡量模型性能非常重要。假設(shè)要評(píng)估一個(gè)圖像分類(lèi)模型的性能。以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是常用的評(píng)估指標(biāo)之一,表示正確分類(lèi)的樣本比例B.召回率衡量了模型能夠正確識(shí)別正例的能力C.F1分?jǐn)?shù)綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說(shuō)明模型在實(shí)際應(yīng)用中一定表現(xiàn)良好7、人工智能中的聚類(lèi)算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對(duì)一組客戶數(shù)據(jù)進(jìn)行聚類(lèi)分析。以下關(guān)于聚類(lèi)算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法是一種常見(jiàn)的聚類(lèi)算法,需要事先指定簇的數(shù)量B.聚類(lèi)算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場(chǎng)細(xì)分等應(yīng)用C.不同的聚類(lèi)算法在不同的數(shù)據(jù)分布和場(chǎng)景下表現(xiàn)各異,需要根據(jù)實(shí)際情況選擇D.聚類(lèi)結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響8、在人工智能的研究中,遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于醫(yī)學(xué)圖像分析,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型應(yīng)用于新的醫(yī)學(xué)圖像任務(wù),無(wú)需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學(xué)習(xí)在這種情況下不可能有效C.對(duì)原模型進(jìn)行適當(dāng)?shù)奈⒄{(diào),并利用少量的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行再訓(xùn)練,可以提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只能應(yīng)用于相似的數(shù)據(jù)類(lèi)型和任務(wù),不能跨越不同領(lǐng)域9、人工智能中的強(qiáng)化學(xué)習(xí)算法可以分為基于值函數(shù)的方法和基于策略的方法。以下關(guān)于這兩種方法的描述,不正確的是()A.基于值函數(shù)的方法通過(guò)估計(jì)狀態(tài)值或動(dòng)作值來(lái)選擇最優(yōu)動(dòng)作B.基于策略的方法直接學(xué)習(xí)策略函數(shù),輸出動(dòng)作的概率分布C.基于值函數(shù)的方法和基于策略的方法不能結(jié)合使用,只能選擇其一D.這兩種方法各有優(yōu)缺點(diǎn),在不同的應(yīng)用場(chǎng)景中表現(xiàn)不同10、人工智能在法律領(lǐng)域的輔助決策中具有一定作用。假設(shè)要利用人工智能協(xié)助法官判斷案件,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.分析大量的法律案例和條文,提供相關(guān)的參考和建議B.利用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)案件中的潛在規(guī)律和模式C.人工智能的判斷結(jié)果可以直接作為最終的法律裁決,無(wú)需法官審查D.幫助法官提高決策的效率和準(zhǔn)確性,但最終決策權(quán)仍在法官手中11、在人工智能的文本分類(lèi)任務(wù)中,假設(shè)要對(duì)大量的新聞文章進(jìn)行分類(lèi),如政治、經(jīng)濟(jì)、體育等。以下關(guān)于特征提取的方法,哪一項(xiàng)是最常用的?()A.使用詞袋模型,將文本表示為詞的頻率向量B.直接將原始文本作為輸入,不進(jìn)行任何特征提取C.運(yùn)用句法分析,提取句子的結(jié)構(gòu)特征D.僅考慮文本的標(biāo)題,忽略正文內(nèi)容12、人工智能在金融領(lǐng)域的應(yīng)用包括風(fēng)險(xiǎn)評(píng)估、投資決策和欺詐檢測(cè)等。假設(shè)一個(gè)銀行正在使用人工智能進(jìn)行風(fēng)險(xiǎn)評(píng)估,以下關(guān)于金融領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.人工智能可以完全取代人類(lèi)專(zhuān)家的判斷,獨(dú)立做出準(zhǔn)確的風(fēng)險(xiǎn)評(píng)估和投資決策B.數(shù)據(jù)的質(zhì)量和完整性對(duì)人工智能在金融領(lǐng)域的應(yīng)用效果沒(méi)有影響C.結(jié)合人工智能模型和人類(lèi)專(zhuān)家的經(jīng)驗(yàn),可以更有效地進(jìn)行金融風(fēng)險(xiǎn)評(píng)估和管理D.人工智能在金融領(lǐng)域的應(yīng)用不存在任何風(fēng)險(xiǎn)和監(jiān)管挑戰(zhàn)13、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計(jì)算量。以下關(guān)于模型壓縮和量化的敘述,不準(zhǔn)確的是()A.可以通過(guò)剪枝、量化和低秩分解等方法實(shí)現(xiàn)模型壓縮B.模型壓縮和量化會(huì)導(dǎo)致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計(jì)算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對(duì)于大型復(fù)雜模型效果不佳D.這些技術(shù)對(duì)于在資源受限的設(shè)備上部署人工智能模型具有重要意義14、人工智能中的圖像超分辨率技術(shù)可以將低分辨率圖像轉(zhuǎn)換為高分辨率圖像。假設(shè)要在保持圖像細(xì)節(jié)的同時(shí)提高超分辨率效果,以下哪個(gè)因素是最關(guān)鍵的?()A.神經(jīng)網(wǎng)絡(luò)的深度B.訓(xùn)練數(shù)據(jù)的質(zhì)量C.損失函數(shù)的選擇D.優(yōu)化器的性能15、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種創(chuàng)新的模型架構(gòu)。以下關(guān)于GAN的說(shuō)法,不正確的是()A.GAN由生成器和判別器組成,通過(guò)兩者之間的對(duì)抗訓(xùn)練來(lái)生成逼真的數(shù)據(jù)B.GAN在圖像生成、文本生成和數(shù)據(jù)增強(qiáng)等領(lǐng)域取得了顯著的成果C.GAN的訓(xùn)練過(guò)程穩(wěn)定,容易收斂到最優(yōu)解D.GAN的應(yīng)用存在一些潛在的問(wèn)題,如模式崩潰和訓(xùn)練不穩(wěn)定等16、人工智能中的遷移學(xué)習(xí)技術(shù)可以利用已有的知識(shí)和模型來(lái)解決新的問(wèn)題。假設(shè)已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類(lèi)任務(wù)。以下哪種遷移學(xué)習(xí)策略最有可能取得較好的效果?()A.直接使用原模型進(jìn)行預(yù)測(cè)B.微調(diào)原模型的部分層C.重新訓(xùn)練一個(gè)新的模型D.對(duì)原模型進(jìn)行壓縮17、在人工智能的模型訓(xùn)練中,過(guò)擬合是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)正在訓(xùn)練一個(gè)用于手寫(xiě)數(shù)字識(shí)別的神經(jīng)網(wǎng)絡(luò),以下關(guān)于防止過(guò)擬合的方法,哪一項(xiàng)是最有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少神經(jīng)網(wǎng)絡(luò)的層數(shù)C.使用更復(fù)雜的激活函數(shù)D.不進(jìn)行任何處理,認(rèn)為過(guò)擬合不會(huì)影響模型性能18、人工智能中的計(jì)算機(jī)視覺(jué)技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。假設(shè)要開(kāi)發(fā)一個(gè)能夠?qū)崟r(shí)監(jiān)測(cè)交通流量和識(shí)別車(chē)輛類(lèi)型的系統(tǒng),需要在不同的天氣和光照條件下準(zhǔn)確地檢測(cè)和分類(lèi)車(chē)輛。以下哪種計(jì)算機(jī)視覺(jué)技術(shù)或方法在這種復(fù)雜場(chǎng)景下具有更好的魯棒性和準(zhǔn)確性?()A.傳統(tǒng)的圖像處理方法B.基于特征提取的方法C.深度學(xué)習(xí)中的目標(biāo)檢測(cè)算法D.光流法19、在人工智能的圖像分割任務(wù)中,假設(shè)要將一幅圖像中的不同物體準(zhǔn)確地分割出來(lái),以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的圖像分割方法簡(jiǎn)單快速,但對(duì)復(fù)雜圖像的效果不佳B.基于區(qū)域的圖像分割方法能夠處理具有相似特征的區(qū)域,但容易出現(xiàn)過(guò)度分割C.基于邊緣檢測(cè)的圖像分割方法能夠準(zhǔn)確地找到物體的邊緣,但對(duì)噪聲敏感D.以上圖像分割方法各有優(yōu)缺點(diǎn),常常結(jié)合使用以提高分割效果20、在人工智能的自動(dòng)駕駛領(lǐng)域,感知模塊負(fù)責(zé)對(duì)周?chē)h(huán)境進(jìn)行理解。假設(shè)要實(shí)現(xiàn)對(duì)道路上行人的準(zhǔn)確檢測(cè),以下哪種技術(shù)可能是最關(guān)鍵的?()A.激光雷達(dá)B.毫米波雷達(dá)C.攝像頭D.超聲波傳感器21、在人工智能的圖像識(shí)別模型中,假設(shè)需要提高模型對(duì)不同光照條件下圖像的魯棒性。以下哪種數(shù)據(jù)增強(qiáng)方法可能有效?()A.隨機(jī)改變圖像的亮度和對(duì)比度B.對(duì)圖像進(jìn)行裁剪和縮放C.旋轉(zhuǎn)圖像一定角度D.以上都是22、在人工智能的圖像識(shí)別任務(wù)中,需要對(duì)大量的圖像進(jìn)行分類(lèi),例如區(qū)分貓、狗、鳥(niǎo)等不同的動(dòng)物類(lèi)別。假設(shè)數(shù)據(jù)集包含各種不同角度、光照條件和背景下的圖像,為了提高圖像識(shí)別的準(zhǔn)確率和泛化能力,以下哪種技術(shù)或策略是重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像B.使用更復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu),增加層數(shù)和參數(shù)C.只使用高質(zhì)量、清晰的圖像進(jìn)行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量,以加快訓(xùn)練速度23、在人工智能的模型評(píng)估中,需要選擇合適的指標(biāo)來(lái)衡量模型的性能。假設(shè)一個(gè)圖像分類(lèi)模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一重要的評(píng)估指標(biāo),其他指標(biāo)如召回率和F1值都不重要B.對(duì)于不平衡的數(shù)據(jù)集,準(zhǔn)確率可能會(huì)產(chǎn)生誤導(dǎo),應(yīng)該使用更合適的指標(biāo)如召回率和F1值C.模型評(píng)估指標(biāo)只與模型的架構(gòu)有關(guān),與數(shù)據(jù)分布無(wú)關(guān)D.選擇評(píng)估指標(biāo)時(shí)不需要考慮具體的應(yīng)用場(chǎng)景和需求24、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車(chē)輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.考慮交通狀況、貨物重量和配送時(shí)間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時(shí)間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會(huì)受到任何突發(fā)情況的影響D.實(shí)時(shí)更新路況信息,動(dòng)態(tài)調(diào)整配送路徑,提高配送效率25、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個(gè)深度學(xué)習(xí)模型時(shí),發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時(shí)避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用26、在人工智能的應(yīng)用于教育領(lǐng)域,個(gè)性化學(xué)習(xí)是一個(gè)重要的方向。假設(shè)我們要為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑推薦,以下關(guān)于個(gè)性化學(xué)習(xí)的說(shuō)法,哪一項(xiàng)是不正確的?()A.需要根據(jù)學(xué)生的學(xué)習(xí)歷史和特點(diǎn)進(jìn)行定制B.完全依賴(lài)人工智能算法,不需要教師的參與C.可以提高學(xué)生的學(xué)習(xí)效率和效果D.要考慮學(xué)生的興趣和能力差異27、在人工智能的自動(dòng)駕駛場(chǎng)景中,車(chē)輛需要與周?chē)钠渌?chē)輛和基礎(chǔ)設(shè)施進(jìn)行有效的通信和協(xié)作。假設(shè)要實(shí)現(xiàn)車(chē)輛之間的安全、高效的信息交互,以下哪種通信技術(shù)和協(xié)議在可靠性和低延遲方面表現(xiàn)最為突出?()A.4G通信B.5G通信C.車(chē)聯(lián)網(wǎng)專(zhuān)用短程通信(DSRC)D.Wi-Fi通信28、在人工智能的倫理和法律問(wèn)題中,算法偏見(jiàn)是一個(gè)需要關(guān)注的重點(diǎn)。假設(shè)一個(gè)招聘用的人工智能系統(tǒng)由于數(shù)據(jù)偏差導(dǎo)致對(duì)某些特定群體的不公平篩選。以下哪種方法在發(fā)現(xiàn)和糾正算法偏見(jiàn)方面最為重要?()A.算法審計(jì)B.數(shù)據(jù)清洗和預(yù)處理C.引入多樣化的數(shù)據(jù)集D.以上方法綜合運(yùn)用29、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會(huì)發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機(jī)制C.對(duì)抗生成網(wǎng)絡(luò)D.以上都是30、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體做出最優(yōu)決策。假設(shè)一個(gè)智能體在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí),以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.智能體通過(guò)隨機(jī)嘗試不同的動(dòng)作來(lái)學(xué)習(xí),不需要任何獎(jiǎng)勵(lì)反饋B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對(duì)智能體的學(xué)習(xí)效果沒(méi)有影響,只要有足夠的訓(xùn)練時(shí)間就能學(xué)會(huì)最優(yōu)策略C.強(qiáng)化學(xué)習(xí)算法能夠保證智能體在有限的時(shí)間內(nèi)找到絕對(duì)最優(yōu)的決策策略D.智能體在學(xué)習(xí)過(guò)程中會(huì)不斷調(diào)整策略以最大化累積獎(jiǎng)勵(lì)二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)借助TensorFlow構(gòu)建一個(gè)強(qiáng)化學(xué)習(xí)模型,讓智能體學(xué)習(xí)在自動(dòng)駕駛場(chǎng)景中做出決策??紤]安全性和效率。2、(本題5分)利用Python的PyTorch庫(kù),構(gòu)建一個(gè)多層卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,對(duì)醫(yī)學(xué)X光圖像數(shù)據(jù)進(jìn)行疾病診斷。研究不同的網(wǎng)絡(luò)深度和卷積核大小對(duì)診斷準(zhǔn)確率的影響。3、(本題5分)在PyTorch中,構(gòu)建一個(gè)對(duì)抗樣本生成模型,對(duì)圖像分類(lèi)模型進(jìn)行攻擊。分析攻擊的效果和模型的魯棒性,研究防御對(duì)抗攻擊的方法。4、(本題5分)使用Python的PyTorch框架,構(gòu)建一個(gè)基于Transformer架構(gòu)的模型,用于自然語(yǔ)言生成任務(wù),分析生成文本的質(zhì)量和連貫性。5、(本題5分)通過(guò)強(qiáng)化學(xué)習(xí)訓(xùn)練一個(gè)智

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論