下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁,共1頁廣州體育學(xué)院《機(jī)器學(xué)習(xí)與模式識(shí)別II(雙語)》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在使用樸素貝葉斯算法進(jìn)行分類時(shí),以下關(guān)于樸素貝葉斯的假設(shè)和特點(diǎn),哪一項(xiàng)是不正確的?()A.假設(shè)特征之間相互獨(dú)立,簡(jiǎn)化了概率計(jì)算B.對(duì)于連續(xù)型特征,通常需要先進(jìn)行離散化處理C.樸素貝葉斯算法對(duì)輸入數(shù)據(jù)的分布沒有要求,適用于各種類型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時(shí)性能較差,容易出現(xiàn)過擬合2、假設(shè)正在進(jìn)行一個(gè)特征選擇任務(wù),需要從大量的特征中選擇最具代表性和區(qū)分性的特征。以下哪種特征選擇方法基于特征與目標(biāo)變量之間的相關(guān)性?()A.過濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以3、在構(gòu)建一個(gè)機(jī)器學(xué)習(xí)模型時(shí),我們通常需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理。假設(shè)我們有一個(gè)包含大量缺失值的數(shù)據(jù)集,以下哪種處理缺失值的方法是較為合理的()A.直接刪除包含缺失值的樣本B.用平均值填充缺失值C.用隨機(jī)值填充缺失值D.不處理缺失值,直接使用原始數(shù)據(jù)4、在機(jī)器學(xué)習(xí)中,對(duì)于一個(gè)分類問題,我們需要選擇合適的算法來提高預(yù)測(cè)準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時(shí)樣本數(shù)量相對(duì)較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.樸素貝葉斯5、在處理自然語言處理任務(wù)時(shí),詞嵌入(WordEmbedding)是一種常用的技術(shù)。假設(shè)我們要對(duì)一段文本進(jìn)行情感分析。以下關(guān)于詞嵌入的描述,哪一項(xiàng)是錯(cuò)誤的?()A.詞嵌入將單詞表示為低維實(shí)數(shù)向量,捕捉單詞之間的語義關(guān)系B.Word2Vec和GloVe是常見的詞嵌入模型,可以學(xué)習(xí)到單詞的分布式表示C.詞嵌入向量的維度通常是固定的,且不同單詞的向量維度必須相同D.詞嵌入可以直接用于文本分類任務(wù),無需進(jìn)行進(jìn)一步的特征工程6、在一個(gè)信用評(píng)估的問題中,需要根據(jù)個(gè)人的信用記錄、收入、債務(wù)等信息評(píng)估其信用風(fēng)險(xiǎn)。以下哪種模型評(píng)估指標(biāo)可能是最重要的?()A.準(zhǔn)確率(Accuracy),衡量正確分類的比例,但在不平衡數(shù)據(jù)集中可能不準(zhǔn)確B.召回率(Recall),關(guān)注正例的識(shí)別能力,但可能導(dǎo)致誤判增加C.F1分?jǐn)?shù),綜合考慮準(zhǔn)確率和召回率,但對(duì)不同類別的權(quán)重相同D.受試者工作特征曲線下面積(AUC-ROC),能夠評(píng)估模型在不同閾值下的性能,對(duì)不平衡數(shù)據(jù)較穩(wěn)健7、在構(gòu)建一個(gè)用于圖像識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時(shí),需要考慮許多因素。假設(shè)我們正在設(shè)計(jì)一個(gè)用于識(shí)別手寫數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計(jì)的描述,哪一項(xiàng)是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識(shí)別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計(jì)算復(fù)雜度,同時(shí)保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強(qiáng)模型的表達(dá)能力8、在進(jìn)行機(jī)器學(xué)習(xí)模型訓(xùn)練時(shí),過擬合是一個(gè)常見的問題。過擬合意味著模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)很好,但在新的、未見過的數(shù)據(jù)上表現(xiàn)不佳。為了防止過擬合,可以采取多種正則化方法。假設(shè)我們正在訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò),以下哪種正則化技術(shù)通常能夠有效地減少過擬合?()A.增加網(wǎng)絡(luò)的層數(shù)和神經(jīng)元數(shù)量B.在損失函數(shù)中添加L1正則項(xiàng)C.使用較小的學(xué)習(xí)率進(jìn)行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量9、當(dāng)使用支持向量機(jī)(SVM)進(jìn)行分類任務(wù)時(shí),如果數(shù)據(jù)不是線性可分的,通常會(huì)采用以下哪種方法()A.增加樣本數(shù)量B.降低維度C.使用核函數(shù)將數(shù)據(jù)映射到高維空間D.更換分類算法10、無監(jiān)督學(xué)習(xí)算法主要包括聚類和降維等方法。以下關(guān)于無監(jiān)督學(xué)習(xí)算法的說法中,錯(cuò)誤的是:聚類算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關(guān)于無監(jiān)督學(xué)習(xí)算法的說法錯(cuò)誤的是()A.K均值聚類算法需要預(yù)先指定聚類的個(gè)數(shù)K,并且對(duì)初始值比較敏感B.層次聚類算法可以生成樹形結(jié)構(gòu)的聚類結(jié)果,便于直觀理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無監(jiān)督學(xué)習(xí)算法不需要任何先驗(yàn)知識(shí),完全由數(shù)據(jù)本身驅(qū)動(dòng)11、假設(shè)正在開發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對(duì)模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法12、考慮一個(gè)推薦系統(tǒng),需要根據(jù)用戶的歷史行為和興趣為其推薦相關(guān)的商品或內(nèi)容。在構(gòu)建推薦模型時(shí),可以使用基于內(nèi)容的推薦、協(xié)同過濾推薦或混合推薦等方法。如果用戶的歷史行為數(shù)據(jù)較為稀疏,以下哪種推薦方法可能更合適?()A.基于內(nèi)容的推薦,利用商品的屬性和用戶的偏好進(jìn)行推薦B.協(xié)同過濾推薦,基于用戶之間的相似性進(jìn)行推薦C.混合推薦,結(jié)合多種推薦方法的優(yōu)點(diǎn)D.以上方法都不合適,無法進(jìn)行有效推薦13、假設(shè)正在開發(fā)一個(gè)用于推薦系統(tǒng)的深度學(xué)習(xí)模型,需要考慮用戶的短期興趣和長(zhǎng)期興趣。以下哪種模型結(jié)構(gòu)可以同時(shí)捕捉這兩種興趣?()A.注意力機(jī)制與循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)合B.多層感知機(jī)與卷積神經(jīng)網(wǎng)絡(luò)的組合C.生成對(duì)抗網(wǎng)絡(luò)與自編碼器的融合D.以上模型都有可能14、某研究需要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器15、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),例如檢測(cè)網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類的方法16、在深度學(xué)習(xí)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用于圖像識(shí)別等領(lǐng)域。假設(shè)我們正在設(shè)計(jì)一個(gè)CNN模型,對(duì)于圖像分類任務(wù),以下哪個(gè)因素對(duì)模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經(jīng)元數(shù)量D.以上因素影響都不大17、在一個(gè)回歸問題中,如果需要考慮多個(gè)輸出變量之間的相關(guān)性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務(wù)學(xué)習(xí)模型D.以上模型都可以18、假設(shè)要為一個(gè)智能推薦系統(tǒng)選擇算法,根據(jù)用戶的歷史行為、興趣偏好和社交關(guān)系為其推薦相關(guān)的產(chǎn)品或內(nèi)容。以下哪種算法或技術(shù)可能是最適合的?()A.基于協(xié)同過濾的推薦算法,利用用戶之間的相似性或物品之間的相關(guān)性進(jìn)行推薦,但存在冷啟動(dòng)和數(shù)據(jù)稀疏問題B.基于內(nèi)容的推薦算法,根據(jù)物品的特征和用戶的偏好匹配推薦,但對(duì)新物品的推薦能力有限C.混合推薦算法,結(jié)合協(xié)同過濾和內(nèi)容推薦的優(yōu)點(diǎn),并通過特征工程和模型融合提高推薦效果,但實(shí)現(xiàn)復(fù)雜D.基于強(qiáng)化學(xué)習(xí)的推薦算法,通過與用戶的交互不斷優(yōu)化推薦策略,但訓(xùn)練難度大且收斂慢19、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測(cè)問題,數(shù)據(jù)具有季節(jié)性和趨勢(shì)性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以20、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于醫(yī)療圖像診斷的機(jī)器學(xué)習(xí)模型,需要提高模型對(duì)小病變的檢測(cè)能力。以下哪種方法可以嘗試?()A.增加數(shù)據(jù)增強(qiáng)的強(qiáng)度B.使用更復(fù)雜的模型架構(gòu)C.引入注意力機(jī)制D.以上方法都可以21、在進(jìn)行深度學(xué)習(xí)中的圖像生成任務(wù)時(shí),生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的模型。假設(shè)我們要生成逼真的人臉圖像。以下關(guān)于GAN的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,它們通過相互對(duì)抗來提高生成圖像的質(zhì)量B.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器C.判別器的任務(wù)是區(qū)分輸入的圖像是真實(shí)的還是由生成器生成的D.GAN的訓(xùn)練過程穩(wěn)定,不容易出現(xiàn)模式崩潰等問題22、在深度學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加速訓(xùn)練B.防止過擬合C.提高模型泛化能力D.以上都是23、當(dāng)處理不平衡數(shù)據(jù)集(即某個(gè)類別在數(shù)據(jù)中占比極小)時(shí),以下哪種方法可以提高模型對(duì)少數(shù)類別的識(shí)別能力()A.對(duì)多數(shù)類別進(jìn)行欠采樣B.對(duì)少數(shù)類別進(jìn)行過采樣C.調(diào)整分類閾值D.以上方法都可以24、考慮一個(gè)時(shí)間序列預(yù)測(cè)問題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項(xiàng)B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動(dòng)平均(SARIMA)模型D.以上都可以25、在一個(gè)氣候預(yù)測(cè)的研究中,需要根據(jù)歷史的氣象數(shù)據(jù),包括溫度、濕度、氣壓等,來預(yù)測(cè)未來一段時(shí)間的天氣狀況。數(shù)據(jù)具有季節(jié)性、周期性和長(zhǎng)期趨勢(shì)等特征。以下哪種預(yù)測(cè)方法可能是最有效的?()A.簡(jiǎn)單的線性時(shí)間序列模型,如自回歸移動(dòng)平均(ARMA)模型,適用于平穩(wěn)數(shù)據(jù),但對(duì)復(fù)雜模式的捕捉能力有限B.季節(jié)性自回歸整合移動(dòng)平均(SARIMA)模型,考慮了季節(jié)性因素,但對(duì)于非線性和突變的情況處理能力不足C.基于深度學(xué)習(xí)的長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)與門控循環(huán)單元(GRU),能夠處理長(zhǎng)序列和復(fù)雜的非線性關(guān)系,但需要大量數(shù)據(jù)和計(jì)算資源D.結(jié)合多種傳統(tǒng)時(shí)間序列模型和機(jī)器學(xué)習(xí)算法的集成方法,綜合各自的優(yōu)勢(shì),但模型復(fù)雜度和調(diào)參難度較高26、在使用隨機(jī)森林算法進(jìn)行分類任務(wù)時(shí),以下關(guān)于隨機(jī)森林特點(diǎn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)森林是由多個(gè)決策樹組成的集成模型,通過投票來決定最終的分類結(jié)果B.隨機(jī)森林在訓(xùn)練過程中對(duì)特征進(jìn)行隨機(jī)抽樣,增加了模型的隨機(jī)性和多樣性C.隨機(jī)森林對(duì)于處理高維度數(shù)據(jù)和缺失值具有較好的魯棒性D.隨機(jī)森林的訓(xùn)練速度比單個(gè)決策樹慢,因?yàn)樾枰獦?gòu)建多個(gè)決策樹27、某研究需要對(duì)大量的文本數(shù)據(jù)進(jìn)行情感分析,判斷文本的情感傾向是積極、消極還是中性。以下哪種機(jī)器學(xué)習(xí)方法在處理此類自然語言處理任務(wù)時(shí)經(jīng)常被采用?()A.基于規(guī)則的方法B.機(jī)器學(xué)習(xí)分類算法C.深度學(xué)習(xí)情感分析模型D.以上方法都可能有效,取決于數(shù)據(jù)和任務(wù)特點(diǎn)28、集成學(xué)習(xí)是一種提高機(jī)器學(xué)習(xí)性能的方法。以下關(guān)于集成學(xué)習(xí)的說法中,錯(cuò)誤的是:集成學(xué)習(xí)通過組合多個(gè)弱學(xué)習(xí)器來構(gòu)建一個(gè)強(qiáng)學(xué)習(xí)器。常見的集成學(xué)習(xí)方法有bagging、boosting和stacking等。那么,下列關(guān)于集成學(xué)習(xí)的說法錯(cuò)誤的是()A.bagging方法通過隨機(jī)采樣訓(xùn)練數(shù)據(jù)來構(gòu)建多個(gè)不同的學(xué)習(xí)器B.boosting方法通過逐步調(diào)整樣本權(quán)重來構(gòu)建多個(gè)不同的學(xué)習(xí)器C.stacking方法將多個(gè)學(xué)習(xí)器的預(yù)測(cè)結(jié)果作為新的特征輸入到一個(gè)元學(xué)習(xí)器中D.集成學(xué)習(xí)方法一定比單個(gè)學(xué)習(xí)器的性能更好29、在進(jìn)行異常檢測(cè)時(shí),以下關(guān)于異常檢測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.基于統(tǒng)計(jì)的方法通過計(jì)算數(shù)據(jù)的均值、方差等統(tǒng)計(jì)量來判斷異常值B.基于距離的方法通過計(jì)算樣本之間的距離來識(shí)別異常點(diǎn)C.基于密度的方法認(rèn)為異常點(diǎn)的局部密度顯著低于正常點(diǎn)D.所有的異常檢測(cè)方法都能準(zhǔn)確地檢測(cè)出所有的異常,不存在漏檢和誤檢的情況30、想象一個(gè)無人駕駛汽車的環(huán)境感知任務(wù),需要識(shí)別道路、車輛、行人等對(duì)象。以下哪種機(jī)器學(xué)習(xí)方法可能是最關(guān)鍵的?()A.目標(biāo)檢測(cè)算法,如FasterR-CNN或YOLO,能夠快速準(zhǔn)確地識(shí)別多個(gè)對(duì)象,但對(duì)小目標(biāo)檢測(cè)可能存在挑戰(zhàn)B.語義分割算法,對(duì)圖像進(jìn)行像素級(jí)的分類,但計(jì)算量較大C.實(shí)例分割算法,不僅區(qū)分不同類別,還區(qū)分同一類別中的不同個(gè)體,但模型復(fù)雜D.以上三種方法結(jié)合使用,根據(jù)具體場(chǎng)景和需求進(jìn)行選擇和優(yōu)化二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)結(jié)合實(shí)際案例,論述機(jī)器學(xué)習(xí)在農(nóng)業(yè)精準(zhǔn)灌溉中的應(yīng)用。探討土壤濕度監(jiān)測(cè)、作物需水量預(yù)測(cè)、灌溉決策等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。2、(本題5分)結(jié)合實(shí)際應(yīng)用,論述機(jī)器學(xué)習(xí)在物流領(lǐng)域的作用。分析路徑優(yōu)化、庫(kù)存管理、需求預(yù)測(cè)等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。3、(本題5分)分析深度學(xué)習(xí)中的注意力機(jī)制在自然語言生成中的應(yīng)用,討論其對(duì)文本質(zhì)量的提升。4、(本題5分)分析深度學(xué)習(xí)中的注意力機(jī)制在圖像描述生成中的應(yīng)用,討論其對(duì)圖像理解的提升。5、(本題5分)探討機(jī)器學(xué)習(xí)在醫(yī)療領(lǐng)域的應(yīng)用潛力。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024網(wǎng)絡(luò)安全防護(hù)與監(jiān)測(cè)服務(wù)合同
- 2024離婚雙方的特殊財(cái)產(chǎn)(如古董、藝術(shù)品)分配合同
- 2025年度住宅小區(qū)蟲鼠害預(yù)防與治理專項(xiàng)服務(wù)合同模板4篇
- 2025年度安全生產(chǎn)應(yīng)急預(yù)案編制合同規(guī)范3篇
- 2025年度新能源汽車銷售代理及售后服務(wù)合同3篇
- 2025年度智慧停車系統(tǒng)車位租賃管理合同樣本4篇
- 2025年度出租車公司車輛更新改造升級(jí)合同3篇
- 2025年度現(xiàn)代農(nóng)業(yè)示范區(qū)場(chǎng)地平整與灌溉系統(tǒng)建設(shè)合同3篇
- 2025年度特色菜肴研發(fā)及廚師團(tuán)隊(duì)聘用協(xié)議4篇
- 2025年度數(shù)據(jù)中心專用電纜供應(yīng)與安裝服務(wù)合同范本4篇
- 小學(xué)心理健康教師資格考試面試2024年下半年試題與參考答案
- (正式版)QC∕T 1206.2-2024 電動(dòng)汽車動(dòng)力蓄電池?zé)峁芾硐到y(tǒng) 第2部分:液冷系統(tǒng)
- (正式版)CB∕T 4550-2024 船舶行業(yè)企業(yè)安全設(shè)備設(shè)施管理規(guī)定
- 完整版肺癌護(hù)理查房課件
- 正規(guī)光伏屋頂租賃合同
- 敘事護(hù)理活動(dòng)方案設(shè)計(jì)
- 小小科學(xué)家《物理》模擬試卷A(附答案)
- 醫(yī)療器械經(jīng)銷商會(huì)議
- 完整版-九年級(jí)科學(xué)科學(xué)公式
- 2023年檢驗(yàn)科室間質(zhì)評(píng)年度總結(jié)
- 《±1100kV特高壓直流換流變壓器使用技術(shù)條件》
評(píng)論
0/150
提交評(píng)論