貴州商學(xué)院《數(shù)據(jù)分析原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
貴州商學(xué)院《數(shù)據(jù)分析原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
貴州商學(xué)院《數(shù)據(jù)分析原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
貴州商學(xué)院《數(shù)據(jù)分析原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
貴州商學(xué)院《數(shù)據(jù)分析原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁貴州商學(xué)院《數(shù)據(jù)分析原理與技術(shù)》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在數(shù)據(jù)清洗過程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對異常值進(jìn)行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再決定處理方式2、在處理大規(guī)模數(shù)據(jù)時,分布式計算框架能夠提高計算效率。假設(shè)要對數(shù)十億條的用戶行為數(shù)據(jù)進(jìn)行分析,需要快速完成復(fù)雜的計算任務(wù)。以下哪個分布式計算框架在處理這種海量數(shù)據(jù)時更具優(yōu)勢?()A.HadoopB.SparkC.FlinkD.Storm3、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評估需要從多個方面衡量數(shù)據(jù)的優(yōu)劣。假設(shè)要評估一個收集的市場調(diào)研數(shù)據(jù)的質(zhì)量,包括準(zhǔn)確性、完整性、一致性和時效性等方面。以下哪種數(shù)據(jù)質(zhì)量評估指標(biāo)在綜合評估數(shù)據(jù)質(zhì)量時更具全面性和客觀性?()A.數(shù)據(jù)質(zhì)量得分B.數(shù)據(jù)質(zhì)量矩陣C.數(shù)據(jù)質(zhì)量報告D.以上方法效果相同4、在數(shù)據(jù)分析中,時間序列分析用于處理具有時間順序的數(shù)據(jù)。假設(shè)我們要分析股票價格的歷史數(shù)據(jù)。以下關(guān)于時間序列分析的描述,哪一項是錯誤的?()A.可以使用移動平均等方法對時間序列進(jìn)行平滑處理,去除噪聲B.自回歸模型(AR)和移動平均模型(MA)可以用于預(yù)測時間序列的未來值C.時間序列數(shù)據(jù)一定是平穩(wěn)的,不需要進(jìn)行平穩(wěn)性檢驗D.可以結(jié)合多種時間序列模型,提高預(yù)測的準(zhǔn)確性5、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識的過程。假設(shè)你在一個電商網(wǎng)站的交易數(shù)據(jù)中進(jìn)行數(shù)據(jù)挖掘,旨在發(fā)現(xiàn)客戶的購買行為模式。以下關(guān)于數(shù)據(jù)挖掘技術(shù)的選擇,哪一項是最有可能有效的?()A.使用關(guān)聯(lián)規(guī)則挖掘,找出經(jīng)常一起購買的商品組合B.應(yīng)用決策樹算法進(jìn)行分類,預(yù)測客戶是否會購買某類商品C.利用聚類分析將客戶分為不同的群體,基于群體特征進(jìn)行營銷D.以上三種技術(shù)結(jié)合使用,全面挖掘數(shù)據(jù)中的潛在信息6、在數(shù)據(jù)分析的聚類分析中,假設(shè)要將一組客戶根據(jù)其消費行為和偏好進(jìn)行分組??蛻魯?shù)據(jù)包括購買歷史、瀏覽記錄和評價等多維度信息。為了得到有意義且區(qū)分度高的聚類結(jié)果,以下哪種聚類算法可能表現(xiàn)更優(yōu)?()A.K-Means聚類,基于距離進(jìn)行分組B.層次聚類,構(gòu)建層次結(jié)構(gòu)C.密度聚類,基于數(shù)據(jù)的密度分布D.隨機(jī)將客戶分配到不同的組7、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),以制定營銷策略。以下關(guān)于數(shù)據(jù)分析目的和方法的描述,正確的是:()A.主要目的是找出銷售額最高的產(chǎn)品,通過簡單排序就能實現(xiàn)B.為了預(yù)測未來銷售趨勢,應(yīng)該使用時間序列分析方法C.分析客戶地域分布對銷售的影響時,無需考慮其他因素D.要評估不同營銷渠道的效果,只需比較銷售額的大小8、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是9、在數(shù)據(jù)分析中,對于一個包含大量金融交易數(shù)據(jù)的數(shù)據(jù)集,需要檢測是否存在異常交易行為,例如突然的大額交易、頻繁的小額交易等。以下哪種技術(shù)可能在異常檢測中發(fā)揮重要作用?()A.聚類分析B.決策樹C.孤立森林算法D.以上都不是10、假設(shè)要為一家電商企業(yè)進(jìn)行銷售數(shù)據(jù)分析,以預(yù)測未來一段時間內(nèi)的銷售額。數(shù)據(jù)集涵蓋了不同產(chǎn)品類別、銷售地區(qū)、銷售時間等多個變量。在這種情況下,為了提高預(yù)測的準(zhǔn)確性,以下哪個步驟可能是至關(guān)重要的?()A.數(shù)據(jù)清洗和預(yù)處理B.選擇合適的預(yù)測模型C.對模型進(jìn)行超參數(shù)調(diào)優(yōu)D.以上都是11、在進(jìn)行數(shù)據(jù)分析時,如果需要對數(shù)據(jù)進(jìn)行降維并保留數(shù)據(jù)的主要特征,以下哪種方法基于矩陣分解?()A.主成分分析B.因子分析C.獨立成分分析D.以上都是12、進(jìn)行數(shù)據(jù)分析時,需要對數(shù)據(jù)進(jìn)行分類。以下關(guān)于分類算法的描述,錯誤的是:()A.決策樹算法易于理解和解釋B.支持向量機(jī)在處理高維數(shù)據(jù)時表現(xiàn)出色C.K近鄰算法對異常值不敏感D.樸素貝葉斯算法假設(shè)各個特征之間相互獨立13、在處理大數(shù)據(jù)時,分布式計算框架發(fā)揮了重要作用。以下關(guān)于分布式計算框架的描述,正確的是:()A.Hadoop僅適用于數(shù)據(jù)存儲,不支持?jǐn)?shù)據(jù)處理B.Spark相比Hadoop,在迭代計算方面性能更優(yōu)C.分布式計算框架可以解決數(shù)據(jù)的一致性問題,但無法提高計算效率D.分布式計算框架中的節(jié)點之間不需要進(jìn)行通信和協(xié)調(diào)14、在進(jìn)行數(shù)據(jù)預(yù)處理時,特征工程是重要的環(huán)節(jié)。以下關(guān)于特征工程的描述,錯誤的是:()A.特征縮放可以加快模型的訓(xùn)練速度B.特征選擇可以去除無關(guān)或冗余的特征C.特征構(gòu)建是從原始數(shù)據(jù)中創(chuàng)造新的特征D.特征工程對模型的性能沒有影響15、在進(jìn)行數(shù)據(jù)分析時,有時候需要對多個數(shù)據(jù)集進(jìn)行合并和連接。假設(shè)我們有兩個數(shù)據(jù)集,分別包含客戶的基本信息和購買記錄,以下哪種連接方式可以根據(jù)共同的客戶ID將兩個數(shù)據(jù)集合并?()A.內(nèi)連接B.外連接C.左連接D.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的倫理風(fēng)險評估,包括數(shù)據(jù)歧視、隱私泄露等方面的評估和防范措施。2、(本題5分)闡述在數(shù)據(jù)分析中,如何處理缺失值,包括常見的處理方法及其優(yōu)缺點,以及在實際應(yīng)用中選擇處理方法的考慮因素。3、(本題5分)闡述數(shù)據(jù)倉庫中的物化視圖的概念和作用,說明在什么情況下使用物化視圖來提高查詢性能,并舉例說明。三、論述題(本大題共5個小題,共25分)1、(本題5分)在金融市場的資產(chǎn)組合優(yōu)化中,如何運用數(shù)據(jù)分析考慮風(fēng)險偏好和投資目標(biāo),實現(xiàn)資產(chǎn)的最優(yōu)配置。2、(本題5分)探討在社交媒體的用戶活躍度提升中,如何運用數(shù)據(jù)分析了解用戶參與度的影響因素,制定激勵措施,提高用戶活躍度。3、(本題5分)在人力資源領(lǐng)域,員工的績效數(shù)據(jù)、培訓(xùn)數(shù)據(jù)等逐漸豐富。分析如何借助數(shù)據(jù)分析手段,如人才選拔模型構(gòu)建、員工發(fā)展規(guī)劃等,優(yōu)化人力資源管理,提高企業(yè)的人才競爭力,同時探討在數(shù)據(jù)主觀性、個人隱私保護(hù)和組織文化適應(yīng)性方面可能面臨的問題及應(yīng)對方法。4、(本題5分)分析在醫(yī)療數(shù)據(jù)的多模態(tài)融合中,如何整合圖像數(shù)據(jù)、文本數(shù)據(jù)和數(shù)值數(shù)據(jù)等,為疾病診斷和治療提供更全面的信息。5、(本題5分)探討在醫(yī)療大數(shù)據(jù)中,如何通過關(guān)聯(lián)規(guī)則挖掘發(fā)現(xiàn)疾病之間的潛在關(guān)聯(lián),為疾病的預(yù)防和診斷提供新的思路和方法。四、案例分析題(本大題共3個小題,共30分)1、(本題10分)某手機(jī)應(yīng)用市場積累了應(yīng)用的更新頻率、用戶評分變化、下載來源等。探討

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論