版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北京市第171中學(xué)2022-2023學(xué)年全國卷Ⅲ數(shù)學(xué)試題高考模擬題解析(精編版)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.2.已知集合,,,則集合()A. B. C. D.3.的展開式中含的項(xiàng)的系數(shù)為()A. B.60 C.70 D.804.函數(shù)的一個(gè)零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)a的取值范圍是()A. B. C. D.5.將函數(shù)的圖象向左平移個(gè)單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.6.已知等差數(shù)列的前項(xiàng)和為,,,則()A.25 B.32 C.35 D.407.已知函數(shù)的圖像的一條對(duì)稱軸為直線,且,則的最小值為()A. B.0 C. D.8.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.9.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.10.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長為1,圖中復(fù)平面內(nèi)點(diǎn)表示復(fù)數(shù),則表示復(fù)數(shù)的點(diǎn)是()A.E B.F C.G D.H11.空間點(diǎn)到平面的距離定義如下:過空間一點(diǎn)作平面的垂線,這個(gè)點(diǎn)和垂足之間的距離叫做這個(gè)點(diǎn)到這個(gè)平面的距離.已知平面,,兩兩互相垂直,點(diǎn),點(diǎn)到,的距離都是3,點(diǎn)是上的動(dòng)點(diǎn),滿足到的距離與到點(diǎn)的距離相等,則點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是()A. B.3 C. D.12.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足:點(diǎn)在直線上,若使、、構(gòu)成等比數(shù)列,則______14.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.15.若,則=______,=______.16.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)若過點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.18.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點(diǎn),直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點(diǎn)O到直線l的距離為定值.19.(12分)已知橢圓的焦距為2,且過點(diǎn).(1)求橢圓的方程;(2)設(shè)為的左焦點(diǎn),點(diǎn)為直線上任意一點(diǎn),過點(diǎn)作的垂線交于兩點(diǎn),(?。┳C明:平分線段(其中為坐標(biāo)原點(diǎn));(ⅱ)當(dāng)取最小值時(shí),求點(diǎn)的坐標(biāo).20.(12分)在直角坐標(biāo)系中,已知點(diǎn),的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)設(shè)曲線與曲線相交于,兩點(diǎn),求的值.21.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點(diǎn),并求公共點(diǎn)的軌跡E的方程;(1)已知點(diǎn)Q(m,0)(m<0),過點(diǎn)E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點(diǎn),記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實(shí)數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說明理由.22.(10分)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.2.D【解析】
根據(jù)集合的混合運(yùn)算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點(diǎn)睛】本題考查集合的混合運(yùn)算,屬基礎(chǔ)題.3.B【解析】
展開式中含的項(xiàng)是由的展開式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,由二項(xiàng)式的通項(xiàng),可得解【詳解】由題意,展開式中含的項(xiàng)是由的展開式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,所以的展開式中含的項(xiàng)的系數(shù)為.故選:B【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.4.C【解析】
顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個(gè)零點(diǎn)在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因?yàn)榈囊粋€(gè)零點(diǎn)在區(qū)間內(nèi),所以,即,解得,故選:C【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,屬于基礎(chǔ)題.5.D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個(gè)單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)?,?dāng)時(shí),,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6.C【解析】
設(shè)出等差數(shù)列的首項(xiàng)和公差,即可根據(jù)題意列出兩個(gè)方程,求出通項(xiàng)公式,從而求得.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,解得,∴,即有.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式的求法和應(yīng)用,涉及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于容易題.7.D【解析】
運(yùn)用輔助角公式,化簡函數(shù)的解析式,由對(duì)稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對(duì)稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時(shí),的最小值,故選D.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對(duì)稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.8.C【解析】
根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫?,平面,所?又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因?yàn)?,?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.9.B【解析】
由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個(gè)以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點(diǎn)睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治觯瑥娜晥D中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個(gè)面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺(tái)的側(cè)面是曲面,計(jì)算側(cè)面積時(shí)需要將這個(gè)曲面展為平面圖形計(jì)算,而表面積是側(cè)面積與底面圓的面積之和.10.C【解析】
由于在復(fù)平面內(nèi)點(diǎn)的坐標(biāo)為,所以,然后將代入化簡后可找到其對(duì)應(yīng)的點(diǎn).【詳解】由,所以,對(duì)應(yīng)點(diǎn).故選:C【點(diǎn)睛】此題考查的是復(fù)數(shù)與復(fù)平面內(nèi)點(diǎn)的對(duì)就關(guān)系,復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題.11.D【解析】
建立平面直角坐標(biāo)系,將問題轉(zhuǎn)化為點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值,利用到軸的距離等于到點(diǎn)的距離得到點(diǎn)軌跡方程,得到,進(jìn)而得到所求最小值.【詳解】如圖,原題等價(jià)于在直角坐標(biāo)系中,點(diǎn),是第一象限內(nèi)的動(dòng)點(diǎn),滿足到軸的距離等于點(diǎn)到點(diǎn)的距離,求點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值.設(shè),則,化簡得:,則,解得:,即點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是.故選:.【點(diǎn)睛】本題考查立體幾何中點(diǎn)面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動(dòng)點(diǎn)軌跡方程,進(jìn)而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.12.D【解析】
根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.13【解析】
根據(jù)點(diǎn)在直線上可求得,由等比中項(xiàng)的定義可構(gòu)造方程求得結(jié)果.【詳解】在上,,成等比數(shù)列,,即,解得:.故答案為:.【點(diǎn)睛】本題考查根據(jù)三項(xiàng)成等比數(shù)列求解參數(shù)值的問題,涉及到等比中項(xiàng)的應(yīng)用,屬于基礎(chǔ)題.14.18【解析】
根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對(duì)稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:①當(dāng)時(shí),,在區(qū)間上單調(diào)遞減,則,即,則.②當(dāng)時(shí),,函數(shù)開口向上,對(duì)稱軸為,因?yàn)樵趨^(qū)間上單調(diào)遞減,則,因?yàn)?則,整理得,又因?yàn)?則.所以即,所以當(dāng)且僅當(dāng)時(shí)等號(hào)成立.綜上所述,的最大值為18.故答案為:18【點(diǎn)睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.15.10【解析】
①根據(jù)換底公式計(jì)算即可得解;②根據(jù)同底對(duì)數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點(diǎn)睛】此題考查對(duì)數(shù)的基本運(yùn)算,涉及換底公式和同底對(duì)數(shù)加法運(yùn)算,屬于基礎(chǔ)題目.16.-8【解析】
通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過時(shí),在軸截距最大本題正確結(jié)果:【點(diǎn)睛】本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2).【解析】試題分析:(1)利用平方法消去參數(shù),即可得到的普通方程,兩邊同乘以利用即可得的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,利用韋達(dá)定理、直線參數(shù)方程的幾何意義以及三角函數(shù)的有界性可得結(jié)果.試題解析:(1)曲線的普通方程為,曲線的直角坐標(biāo)方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù))又直線與曲線:存在兩個(gè)交點(diǎn),因此.聯(lián)立直線與曲線:可得則聯(lián)立直線與曲線:可得,則即18.(I)|FP|=2-32x【解析】
(I)直接利用兩點(diǎn)間距離公式化簡得到答案.(II)設(shè)Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設(shè)Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點(diǎn)O到直線l的距離為d=m【點(diǎn)睛】本題考查了橢圓內(nèi)的線段長度,定值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19.(1)(2)(ⅰ)見解析(ⅱ)點(diǎn)的坐標(biāo)為.【解析】
(1)由題意得,再由的關(guān)系求出,即可得橢圓的標(biāo)準(zhǔn)方程;(2)(i)設(shè),的中點(diǎn)為,,設(shè)直線的方程為,代入橢圓方程中,運(yùn)用根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式,結(jié)合三點(diǎn)共線的方法:斜率相等,即可得證;(ii)利用兩點(diǎn)間的距離公式及弦長公式將表示出來,由換元法的對(duì)勾函數(shù)的單調(diào)性,可得取最小值時(shí)的條件獲得等量關(guān)系,從而確定點(diǎn)的坐標(biāo).【詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設(shè),的中點(diǎn)為,(?。┳C明:由,可設(shè)直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因?yàn)?,所以,所以三點(diǎn)共線,所以平分線段;(ii)由兩點(diǎn)間的距離公式得由弦長公式得所以,令,則,由在上遞增,可得,即時(shí),取得最小值4,所以當(dāng)取最小值時(shí),點(diǎn)的坐標(biāo)為【點(diǎn)睛】此題考那可是橢圓方程和性質(zhì),主要考查橢圓方程的運(yùn)用,運(yùn)用根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式,同時(shí)考查弦長公式,屬于較難題.20.(1);(2)【解析】
(1)消去參數(shù)方程中的參數(shù),求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)求得曲線的標(biāo)準(zhǔn)參數(shù)方程,代入的直角坐標(biāo)方程,寫出韋達(dá)定理,根據(jù)直線參數(shù)中參數(shù)的幾何意義,求得的值.【詳解】(1)由的參數(shù)方程(為參數(shù)),消去參數(shù)可得,由曲線的極坐標(biāo)方程為,得,所以的直角坐方程為,即.(2)因?yàn)樵谇€上,故可設(shè)曲線的參數(shù)方程為(為參數(shù)),代入化簡可得.設(shè),對(duì)應(yīng)的參數(shù)分別為,,則,,所以.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用利用和直線參數(shù)方程中參數(shù)的幾何意義進(jìn)行計(jì)算,屬于中檔題.21.(1)見解析,(1)存在,【解析】
(1)求出圓和圓的圓心和半徑,通過圓F1與圓F1有公共點(diǎn)求出的范圍,從而根據(jù)可得點(diǎn)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能洗浴中心設(shè)備承包及維護(hù)合同協(xié)議書4篇
- 二零二五年度賓館客房租賃與酒店管理服務(wù)合同3篇
- 2025年度民宿托管及特色服務(wù)合作協(xié)議
- 2025年度排水溝施工安全責(zé)任合同樣本
- 2025年三硅酸鎂五水項(xiàng)目投資可行性研究分析報(bào)告
- 2025年印染布項(xiàng)目可行性研究報(bào)告
- 2024水電站工程檔案管理與歸檔合同
- 2025年高考作文備考之與春晚相關(guān)的12個(gè)主題素材
- 2025年度瓷磚運(yùn)輸保險(xiǎn)理賠服務(wù)合同范本4篇
- 2025年中國蜂王漿軟膠囊行業(yè)市場深度研究及投資戰(zhàn)略咨詢報(bào)告
- 餐廚垃圾收運(yùn)安全操作規(guī)范
- 皮膚內(nèi)科過敏反應(yīng)病例分析
- 電影《獅子王》的視聽語言解析
- 妊娠合并低鉀血癥護(hù)理查房
- 煤礦反三違培訓(xùn)課件
- 向流程設(shè)計(jì)要效率
- 2024年中國航空發(fā)動(dòng)機(jī)集團(tuán)招聘筆試參考題庫含答案解析
- 當(dāng)代中外公司治理典型案例剖析(中科院研究生課件)
- 動(dòng)力管道設(shè)計(jì)手冊(cè)-第2版
- 2022年重慶市中考物理試卷A卷(附答案)
- Python繪圖庫Turtle詳解(含豐富示例)
評(píng)論
0/150
提交評(píng)論