2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第1頁
2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第2頁
2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第3頁
2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第4頁
2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、【題文】設(shè)集合U={1,2,3,4,5,6},M={1,3,5},則?UM等于()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U2、【題文】已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+則f(-1)=()A.-2B.0C.1D.23、【題文】已知?jiǎng)t()A.空集B.C.D.4、已知為銳角,且則的值是()A.B.C.D.5、設(shè)m,n是兩條不同直線,是兩個(gè)不同的平面,下列命題正確的是()A.且則B.且則C.則D.則6、在△ABC中,==.若點(diǎn)D滿足=2則=()A.+B.-C.-D.+7、設(shè)m,n是兩條不同的直線,是三個(gè)不同的平面;有下列四個(gè)命題:

①則②若則

③若則④若則

其中真命題的是()A.①④B.①③C.③④D.①②評(píng)卷人得分二、填空題(共8題,共16分)8、函數(shù)的值域?yàn)開_______.9、已知點(diǎn)在直線的同側(cè),則實(shí)數(shù)的取值范圍為____10、【題文】命題“”的否定是____.11、向量按平移所掃過平面部分的面積等于____.12、函數(shù)y=f(x)的圖象如圖所示,試寫出該函數(shù)的兩條性質(zhì):____.

13、若實(shí)數(shù)α滿足loga2>1,則a的取值范圍為____.14、點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上被x軸反射,反射光線與圓C:x2+y2-4x-4y+7=0相切,則光線l所在直線方程為______.15、已知|a鈫?|=|b鈫?|

且|a鈫?鈭?b鈫?|=3|a鈫?+b鈫?|

則a鈫?

與b鈫?

的夾角大小為______.評(píng)卷人得分三、證明題(共9題,共18分)16、求證:(1)周長(zhǎng)為21的平行四邊形能夠被半徑為的圓面所覆蓋.

(2)桌面上放有一絲線做成的線圈,它的周長(zhǎng)是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.17、如圖,設(shè)△ABC是直角三角形,點(diǎn)D在斜邊BC上,BD=4DC.已知圓過點(diǎn)C且與AC相交于F,與AB相切于AB的中點(diǎn)G.求證:AD⊥BF.18、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.19、如圖;已知AB是⊙O的直徑,P是AB延長(zhǎng)線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.20、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.21、初中我們學(xué)過了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.22、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.23、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長(zhǎng)線交圓于D,求證:AG2=GC?GD.24、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評(píng)卷人得分四、作圖題(共1題,共10分)25、已知簡(jiǎn)單組合體如圖;試畫出它的三視圖(尺寸不做嚴(yán)格要求)

評(píng)卷人得分五、綜合題(共1題,共9分)26、已知點(diǎn)A(-2,0),點(diǎn)B(0,2),點(diǎn)C在第二、四象限坐標(biāo)軸夾角平分線上,∠BAC=60°,那么點(diǎn)C的坐標(biāo)為____.參考答案一、選擇題(共7題,共14分)1、A【分析】【解析】?UM={2,4,6}.【解析】【答案】A2、A【分析】【解析】f(-1)=-f(1)=-2.【解析】【答案】A3、D【分析】【解析】

試題分析:∵即點(diǎn)(1,1),∴

考點(diǎn):本題考查了交集的運(yùn)算。

點(diǎn)評(píng):求解集合的交、并、補(bǔ)問題時(shí),一定要注意集合中的對(duì)象的特征,避免出錯(cuò)【解析】【答案】D4、B【分析】【解答】根據(jù)題意,由于為銳角,且cos=cos=那么可知sin=sin=則根據(jù)那么可知的值為選B.5、B【分析】【解答】且則或互為異面直線;所以,A不正確;

若且則B正確;

若則或相交;即C不正確;

若則或相交,如均平行于的交線時(shí),故選B.6、A【分析】【解答】解:由題意可得

故選A

【分析】由向量的運(yùn)算法則,結(jié)合題意可得代入已知化簡(jiǎn)可得.7、A【分析】【解答】根據(jù)題意可知;已知中如果平面直線互相平行,則說明了平行的傳遞性,可知命題1成立。命題2,已知兩個(gè)平面垂直,其中一條直線平行與這兩個(gè)平面中的一個(gè),可能與另一個(gè)平面斜交,故錯(cuò)誤,命題3中,垂直于同一平面的兩個(gè)平面可能相交也可能平行,故命題3錯(cuò)誤,命題4中,由于兩個(gè)平行線中一條垂直于該平面,則另一條也垂直于該平面,故命題4正確,因此選A.

【分析】解決該試題的關(guān)鍵是熟練的運(yùn)用線面垂直和面面平行的判定定理來分析證明,同時(shí)考查了空間想象力,屬于基礎(chǔ)題。二、填空題(共8題,共16分)8、略

【分析】【解析】試題分析:因?yàn)楹瘮?shù)故答案為考點(diǎn):本試題主要考查了反比例函數(shù)的值域的求解?!窘馕觥俊敬鸢浮?、略

【分析】【解析】【答案】10、略

【分析】【解析】

試題分析:根據(jù)全稱命題的否定為特稱命題可知,命題“”的否定為“”.

考點(diǎn):全稱命題與特稱命題.【解析】【答案】11、【分析】【解答】

平移所掃過平面部分是。

一個(gè)邊長(zhǎng)為1菱形,其銳角為600;

∴面積S=

故答案:

【分析】由向量按平移,是將向量向左平移一個(gè)單位,分析其掃過的平面部分的形狀,代入面積公式即可求出答案.12、①函數(shù)y=f(x)是偶函數(shù);②函數(shù)的值域是[2,5]【分析】【解答】解:由圖象可知:

函數(shù)的圖象關(guān)于y軸對(duì)稱;①函數(shù)y=f(x)是偶函數(shù);

②函數(shù)的值域是[2;5].

故答案為:①函數(shù)y=f(x)是偶函數(shù);②函數(shù)的值域是[2;5].

【分析】根據(jù)函數(shù)圖象可以直接回答:函數(shù)圖象的對(duì)稱性,對(duì)稱軸方程,單調(diào)區(qū)間,定義域,值域等等.13、(1,2)【分析】【解答】解:∵loga2>1=logaa;

∴或

解得1<a<2或a∈?.

∴a的取值范圍為(1;2).

故答案為:(1;2).

【分析】loga2>1=logaa,可得或解出即可.14、略

【分析】解:已知圓的標(biāo)準(zhǔn)方程是(x-2)2+(y-2)2=1;

它關(guān)于x軸的對(duì)稱圓的方程是(x-2)2+(y+2)2=1;

設(shè)光線L所在直線的方程是y-3=k(x+3)(其中斜率k待定)

由題設(shè)知對(duì)稱圓的圓心C'(2;-2)到這條直線的距離等于1;

即d=.

整理得:12k2+25k+12=0;

解得:k=-或k=-.

故所求的直線方程是y-3=-(x+3),或y-3=-(x+3);

即3x+4y-3=0;或4x+3y+3=0.

故答案為:3x+4y-3=0;或4x+3y+3=0.

化簡(jiǎn)圓的方程為標(biāo)準(zhǔn)方程;求出關(guān)于x軸對(duì)稱的圓的方程,設(shè)l的斜率為k,利用相切求出k的值即可得到l的方程.

本題考查點(diǎn)、直線和圓的對(duì)稱問題,直線與圓的關(guān)系,是基礎(chǔ)題.【解析】3x+4y-3=0,或4x+3y+3=015、略

【分析】解:隆脽|a鈫?鈭?b鈫?|=3|a鈫?+b鈫?|

隆脿a鈫?2鈭?2a鈫?鈰?b鈫?+b鈫?2=3a鈫?2+3b鈫?2+6a鈫?鈰?b鈫?

隆脽|a鈫?|=|b鈫?|隆脿a鈫?鈰?b鈫?=鈭?鈭?4a鈫?28=鈭?12a鈫?2

隆脿cos<a鈫?,b鈫?>=a鈫?鈰?b鈫?|a鈫?||b鈫?|=鈭?12

隆脿a鈫?

與b鈫?

的夾角大小為2婁脨3

故答案為:2婁脨3

對(duì)|a鈫?鈭?b鈫?|=3|a鈫?+b鈫?|

兩邊平方,得出a鈫?鈰?b鈫?

與a鈫?2

的關(guān)系;代入夾角公式計(jì)算即可.

本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.【解析】2婁脨3

三、證明題(共9題,共18分)16、略

【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線交點(diǎn)疊合.

(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】

證明:(1)如圖1;設(shè)ABCD的周長(zhǎng)為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;

則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周長(zhǎng)為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.

(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長(zhǎng)兩段,每段各長(zhǎng)l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G為圓心,長(zhǎng)為半徑的圓紙片可以覆蓋住整個(gè)線圈.17、略

【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點(diǎn);

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.18、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.19、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結(jié)論;

(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽R(shí)t△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽R(shí)t△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.20、略

【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點(diǎn)共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點(diǎn)共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.21、略

【分析】【分析】(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長(zhǎng)度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.22、略

【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;

(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F為AC中點(diǎn);

∴cosC==.

答:cosC的值是.

(3)BF過圓心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.23、略

【分析】【分析】構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長(zhǎng)GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長(zhǎng)GP至F;使PF=PG,連接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四邊形GBFC是平行四邊形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵過A;G的圓與BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四點(diǎn)共圓;

∴GA;GF=GC?GD;

即GA2=GC?GD.24、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論