版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年人教A新版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷107考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、設(shè)是定義在上的偶函數(shù),則的值域是A.B.C.D.與有關(guān),不能確定2、設(shè)a,b為正實(shí)數(shù),下列結(jié)論正確的是①若a-b=1,則a-b<1;②若則a-b<1;③若則|a-b|<1;④若|a-b|=1,則|a-b|<1.A.①②B.②④C.①③D.①④3、【題文】函數(shù)的值域是A.B.C.D.4、已知A、B、C是圓O:x2+y2=r2上三點(diǎn),且+=等于()A.0B.C.D.-5、已知集合A={-1,0,1,2,3},B={x|(x+1)(x-2)<0,x∈Z},則A∩B=()A.{1}B.{0,1}C.{-1,0,1,2}D.{-1,0,1,2,3}6、已知平面向量a鈫?=(x,1)b鈫?=(鈭?x,x2)
則向量a鈫?+b鈫?(
)
A.平行于x
軸B.平行于第一、三象限的角平分線C.平行于y
軸D.平行于第二、四象限的角平分線7、已知f(x)=ax2+bx
是定義在[a鈭?1,2a]
上的偶函數(shù),那么a+b
的值是(
)
A.鈭?13
B.13
C.鈭?12
D.12
評(píng)卷人得分二、填空題(共7題,共14分)8、方程的解是x=____.9、已知?jiǎng)t的值=____.10、不等式-x2-4x+5>0的解集是____.11、已知數(shù)列{an}的通項(xiàng)公式為an=23-4n,Sn是其前n項(xiàng)之和,則使數(shù)列的前n項(xiàng)和最大的正整數(shù)n的值為.12、【題文】設(shè)表示不超過(guò)的最大整數(shù),如若函數(shù)則函數(shù)的值域?yàn)開(kāi)___.13、不等式lg(x-1)<2的解集為_(kāi)_____.14、若不存在整數(shù)x使不等式(kx-k2-4)(x-4)<0成立,則實(shí)數(shù)k的取值范圍是______.評(píng)卷人得分三、計(jì)算題(共7題,共14分)15、已知tanα=3,計(jì)算(1)(sinα+cosα)2;(2)的值.16、(2010?泉州校級(jí)自主招生)直角三角形ABC中,BC=AC,弧DEF圓心為A.已知兩陰影面積相等,那么AD:DB=____.17、如圖,∠1=∠B,AD?AC=5AE,DE=2,那么BC?AD=____.18、解方程
(1)3x2-32x-48=0
(2)4x2+x-3=0
(3)(3x+1)2-4=0
(4)9(x-2)2=4(x+1)2.19、己知方程x2-x-1=0的根是方程x6-px2+q=0的根,則p=____,q=____.20、如圖,已知在△ABC中,若AC和BC邊的長(zhǎng)是關(guān)于x的方程x2-(AB+4)x+4AB+8=0的兩個(gè)根,且25BC?sinA=9AB.求△ABC三邊的長(zhǎng)?21、如圖,在直角坐標(biāo)系內(nèi)有兩個(gè)點(diǎn)A(-1,-1),B(2,3),若M為x軸上一點(diǎn),且使MB-MA最大,求M點(diǎn)的坐標(biāo),并說(shuō)明理由.評(píng)卷人得分四、作圖題(共4題,共8分)22、畫出計(jì)算1++++的程序框圖.23、以下是一個(gè)用基本算法語(yǔ)句編寫的程序;根據(jù)程序畫出其相應(yīng)的程序框圖.
24、某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫出潛艇整個(gè)過(guò)程的位移示意圖.25、繪制以下算法對(duì)應(yīng)的程序框圖:
第一步;輸入變量x;
第二步,根據(jù)函數(shù)f(x)=
對(duì)變量y賦值;使y=f(x);
第三步,輸出變量y的值.評(píng)卷人得分五、證明題(共4題,共8分)26、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.27、初中我們學(xué)過(guò)了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問(wèn)題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.28、求證:(1)周長(zhǎng)為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長(zhǎng)是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.29、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.評(píng)卷人得分六、綜合題(共2題,共6分)30、(2012?鎮(zhèn)海區(qū)校級(jí)自主招生)如圖,在坐標(biāo)平面上,沿著兩條坐標(biāo)軸擺著三個(gè)相同的長(zhǎng)方形,其長(zhǎng)、寬分別為4、2,則通過(guò)A,B,C三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)關(guān)系式是____.31、已知拋物線y=ax2-2ax+c-1的頂點(diǎn)在直線y=-上,與x軸相交于B(α,0)、C(β,0)兩點(diǎn),其中α<β,且α2+β2=10.
(1)求這個(gè)拋物線的解析式;
(2)設(shè)這個(gè)拋物線與y軸的交點(diǎn)為P;H是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)H作HK∥PB,交PC于K,連接PH,記線段BH的長(zhǎng)為t,△PHK的面積為S,試將S表示成t的函數(shù);
(3)求S的最大值,以及S取最大值時(shí)過(guò)H、K兩點(diǎn)的直線的解析式.參考答案一、選擇題(共7題,共14分)1、A【分析】試題分析:因?yàn)槭嵌x在上的偶函數(shù),所以即即在上遞增,在上遞減,其值域?yàn)榧纯键c(diǎn):函數(shù)的奇偶性與值域.【解析】【答案】A.2、D【分析】【解析】試題分析:因?yàn)?,a-b=1,a,b為正實(shí)數(shù),所以,而>0,故,a-b<1,①正確;排除B。對(duì)于②因?yàn)?可取a=7,b=則a-b>1,說(shuō)明②錯(cuò)誤.排除A,B。由a=4,b=1,使但,不滿足|a-b|<1,知③不正確;排除C。綜上知,正確選項(xiàng)為D??键c(diǎn):實(shí)數(shù)的大小關(guān)系【解析】【答案】D3、C【分析】【解析】解析:【解析】【答案】C4、A【分析】【解答】∵A、B、C是圓O:x2+y2=r2上三點(diǎn);
∴
∴=0.
故選A.
【分析】由A、B、C是圓O:x2+y2=r2上三點(diǎn),知由此能求出=0。5、B【分析】解:∵A={-1;0,1,2,3},B={x|(x+1)(x-2)<0,x∈Z}={0,1};
∴A∩B={-1;0,1,2,3}∩{0,1}={0,1}.
故選:B.
直接解一元二次不等式化簡(jiǎn)集合B;再由交集運(yùn)算性質(zhì)得答案.
本題考查了交集及其運(yùn)算,考查了一元二次不等式的解法,是基礎(chǔ)題.【解析】【答案】B6、C【分析】解:a鈫?+b鈫?=(0,1+x2)1+x2鈮?0
故a鈫?+b鈫?
平行于y
軸.
故選C
先做出兩個(gè)向量的和;橫標(biāo)和縱標(biāo)都用含x
的代數(shù)式表示,結(jié)果和的橫標(biāo)為零,得到和向量與縱軸平行,要熟悉幾種特殊的向量坐標(biāo)特點(diǎn),比如:與橫軸平行的向量;與縱軸平行的向量.
本題要求從坐標(biāo)判斷向量的特點(diǎn),即用到向量的方向又用到向量的大小,大小和方向是向量的兩個(gè)要素,分別是向量的代數(shù)特征和幾何特征,借助于向量可以實(shí)現(xiàn)某些代數(shù)問(wèn)題與幾何問(wèn)題的相互轉(zhuǎn)化.【解析】C
7、B【分析】解:依題意得:f(鈭?x)=f(x)隆脿b=0
又a鈭?1=鈭?2a隆脿a=13
隆脿a+b=13
.
故選B.
依照偶函數(shù)的定義;對(duì)定義域內(nèi)的任意實(shí)數(shù),f(鈭?x)=f(x)
且定義域關(guān)于原點(diǎn)對(duì)稱,a鈭?1=鈭?2a
.
本題考查偶函數(shù)的定義;對(duì)定義域內(nèi)的任意實(shí)數(shù),f(鈭?x)=f(x)
奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱;
定義域區(qū)間2
個(gè)端點(diǎn)互為相反數(shù).【解析】B
二、填空題(共7題,共14分)8、略
【分析】
∵=2-2;
∴l(xiāng)og3x=-2;
∴x=.
故答案為:.
【解析】【答案】由=2-2,知log3x=-2,由此能求出方程的解.
9、略
【分析】
∵
∴
=
=
=
=2.
故答案為:2
【解析】【答案】把所求式子的分子分母同時(shí)除以cosα;利用同角三角函數(shù)間的基本關(guān)系弦化切后,再利用特殊角的三角函數(shù)值及兩角和與差的正切函數(shù)公式化簡(jiǎn),將已知的等式代入即可求出所求式子的值.
10、略
【分析】
不等式-x2-4x+5>0化為:x2+4x-5<0;解得-5<x<1.
所以不等式的解集為:{x|-5<x<1};
故答案為:{x|-5<x<1}.
【解析】【答案】直接利用一元二次不等式的解法;求解即可.
11、略
【分析】所以由得所以數(shù)列的前n項(xiàng)和最大的正整數(shù)n的值為10【解析】【答案】10.12、略
【分析】【解析】
試題分析:因?yàn)樗?/p>
所以。
當(dāng)時(shí),故
當(dāng)時(shí),故
當(dāng)時(shí),故
綜上可知的值域?yàn)?/p>
考點(diǎn):1.新定義;2.函數(shù)的解析式;3.函數(shù)的值域.【解析】【答案】13、略
【分析】解:由lg(x-1)<2;得lg(x-1)<lg100;
則0<x-1<100;
∴1<x<101.
則不等式lg(x-1)<2的解集為(1;101).
故答案為:(1;101).
把不等式兩邊化為同底數(shù);然后轉(zhuǎn)化為一次不等式求解.
本題考查對(duì)數(shù)不等式的解法,是基礎(chǔ)的計(jì)算題.【解析】(1,101)14、略
【分析】解:設(shè)原不等式的解集為A;
當(dāng)k=0時(shí);則x>4,不合題意;
當(dāng)k>0且k≠2時(shí),原不等式化為[x-()](x-4)<0;
∵
∴要使不存在整數(shù)x使不等式(kx-k2-4)(x-4)<0成立;
須解得:1≤k≤4;
當(dāng)k=2時(shí);A=?,合題意;
當(dāng)k<0時(shí),原不等式化為[x-()](x-4)>0;
∴A=(-∞,)∪(4;+∞),不合題意;
故答案為:1≤k≤4.
設(shè)原不等式的解集為A,然后分k大于0且不等于2,k等于2,小于0和等于0四種情況考慮,當(dāng)k等于0時(shí),代入不等式得到關(guān)于x的一元一次不等式,求出不等式的解集即為原不等式的解集;當(dāng)k大于0且k不等于2時(shí),不等式兩邊除以k把不等式變形后,根據(jù)基本不等式判斷與4的大小即可得到原不等式的解集;當(dāng)k等于2時(shí),代入不等式,根據(jù)完全平方式大于0,得到x不等于4,進(jìn)而得到原不等式的解集;當(dāng)k小于0時(shí),不等式兩邊都除以k把不等式變形后,根據(jù)小于4;得到原不等式的解集,綜上,得到原不等式的解集;
此題考查了一元二次不等式的解法,考查了分類討論的數(shù)學(xué)思想,同時(shí)考查了運(yùn)算能力,是一道中檔題.【解析】1≤k≤4三、計(jì)算題(共7題,共14分)15、略
【分析】【分析】(1)利用tanα==3得到a=3b,利用勾股定理求得斜邊c=b;代入即可得到答案;
(2)分子分母同時(shí)除以cosα,把tanα=3代入答案可得;【解析】【解答】解:(1)∵tanα==3;
∴a=3b;
∴c==b;
∴(sinα+cosα)2=(+)2=(+)2=;
(2)∵tanα==3;
∴tanα==3;
===.16、略
【分析】【分析】若兩個(gè)陰影部分的面積相等,那么△ABC和扇形ADF的面積就相等,可分別表示出兩者的面積,然后列等式求出AD與DB的比.【解析】【解答】解:設(shè)AB=BC=a則AB=a;
∵兩陰影面積相等,∴SABC=S扇形ADF
即a2=AD2?π;
∴AD=;
∴AD:DB=AD:(AB-AD)=;
故答案為.17、略
【分析】【分析】根據(jù)∠1=∠B,∠A=∠A判斷出△AED∽△ACB,根據(jù)相似三角形的性質(zhì),列出比例式:,則,可求得AD?AC=AE?AB,有根據(jù)AD?AC=5AE,求出AB=5,再根據(jù)△AED∽△ACB,列出比例式=,可求出AD?BC=AB?ED=5×2=10.【解析】【解答】解:∵∠1=∠B;∠A=∠A;
∴△AED∽△ACB;
∴;
即AD?AC=AE?AB;
又∵AD?AC=5AE;
可得AB=5;
又知=;
可得AD?BC=AB?ED=5×2=10.
故答案為10.18、略
【分析】【分析】(1)方程左邊的多項(xiàng)式利用十字相乘法分解因式;然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解;
(2)方程左邊的多項(xiàng)式利用十字相乘法分解因式;然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解;
(3)將常數(shù)項(xiàng)移到右邊;開(kāi)方轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解;
(4)利用兩數(shù)的平方相等,兩數(shù)相等或互為相反數(shù)轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解.【解析】【解答】解:(1)3x2-32x-48=0;
分解因式得:(x-12)(3x+4)=0;
可得x-12=0或3x+4=0;
解得:x1=12,x2=-;
(2)4x2+x-3=0;
分解因式得:(4x-3)(x+1)=0;
可得4x-3=0=或x+1=0;
解得:x1=,x2=-1;
(3)(3x+1)2-4=0;
變形得:(3x+1)2=4;
開(kāi)方得:3x+1=2或3x+1=-2;
解得:x1=,x2=-1;
(4)9(x-2)2=4(x+1)2;
開(kāi)方得:3(x-2)=2(x+1)或3(x-2)=-2(x+1);
解得:x1=8,x2=.19、略
【分析】【分析】根據(jù)韋達(dá)定理求得設(shè)方程x2-x-1=0的二根分別為x1、x2,由韋達(dá)定理,得x1+x2=1,x1?x2=-1;然后將x1、x2分別代入方程x6-px2+q=0列出方程組,再通過(guò)解方程組求得pq的值.【解析】【解答】解:設(shè)方程x2-x-1=0的二根分別為x1、x2,由韋達(dá)定理,得x1+x2=1,x1?x2=-1;則。
x12+x22=(x1+x2)2-2x1?x2=1+2=3;
(x12)2+(x22)2=(x12+x22)2-2x12?x22=7.
將x1、x2分別代入方程x6-px2+q=0;得。
x16-px12+q=0①
x26-px22+q=0②
①-②;得。
(x16-x26)-p(x12-x22)=0;
【(x12)3-(x22)3】-p(x12-x22)=0;
(x12-x22)【(x12)2+(x22)2+x12?x22】-p(x12-x22)=0;
由于x1≠x2,則x12-x22≠0;所以化簡(jiǎn),得。
【(x12)2+(x22)2+x12?x22】-p=0;
則p=(x12)2+(x22)2+(x1?x2)2=7+(-1)2=8;
①+②;得。
(x16+x26)-8(x12+x22)+2q=0;
【(x12)3+(x22)3】-24+2q=0;
∴(x12+x22)【(x12)2+(x22)2-x12?x22】-24+2q=0;
∴3【(x12)2+(x22)2-(x1?x2)2】-24+2q=0;
∴3(7-1)-24+2q=0;解得。
q=3;
綜上所述;p=8,q=3.
故答案是:8、3.20、略
【分析】【分析】首先由根與系數(shù)的關(guān)系可以得到AC+BC=AB+4(1),AC?BC=4AB+8(2),然后由(1)2-2(2)得AC2+BC2=AB2;
然后利用勾股定理的逆定理即可判定△ABC是直角三角形,且∠C=90°,接著利用三角函數(shù)可以得到=sinA;
由25BC?sinA=9AB可以得到sinA?=,然后就可以求出sinA=,也就求出=,設(shè)BC=3k,AB=5k,由勾股定理得AC=4k,這樣利用(1)即可解決問(wèn)題.【解析】【解答】解:依題意得:AC+BC=AB+4(1)
AC?BC=4AB+8(2);
由(1)2-2(2)得:AC2+BC2=AB2;
∴△ABC是直角三角形;且∠C=90°;
在Rt△ABC中,=sinA;
由題意得:sinA?=;
∵∠A是Rt△ABC的銳角;
∴sinA>0;
∴sinA=;
∴=;
設(shè)BC=3k;AB=5k,由勾股定理得AC=4k;
結(jié)合(1)式得4k+3k=5k+4;解之得:k=2.
∴BC=6,AB=10,AC=8.21、略
【分析】【分析】作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A',作直線BA'交x軸于點(diǎn)M,根據(jù)軸對(duì)稱的性質(zhì)可得出MA'=MA,MB-MA=MB-MA'=A'B,再用待定系數(shù)法求出直線A'B的解析式,根據(jù)x軸上點(diǎn)的坐標(biāo)特點(diǎn)即可求出M點(diǎn)的坐標(biāo).【解析】【解答】解:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A';
作直線BA'交x軸于點(diǎn)M;
由對(duì)稱性知MA'=MA;MB-MA=MB-MA'=A'B;
若N是x軸上異于M的點(diǎn);
則NA'=NA;這時(shí)NB-NA=NB-NA'<A'B=MB-MA;
所以;點(diǎn)M就是使MB-MA的最大的點(diǎn),MB-MA的最大值為A'B;
設(shè)直線A'B的解析式為y=kx+b;
則解得,,即直線A'B的解析式為;
令y=0,得,故M點(diǎn)的坐標(biāo)為(;0).
故答案為:(,0).四、作圖題(共4題,共8分)22、解:程序框圖如下:
【分析】【分析】根據(jù)題意,設(shè)計(jì)的程序框圖時(shí)需要分別設(shè)置一個(gè)累加變量S和一個(gè)計(jì)數(shù)變量i,以及判斷項(xiàng)數(shù)的判斷框.23、解:程序框圖如下:
【分析】【分析】根據(jù)題目中的程序語(yǔ)言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號(hào)及其作用,即可畫出流程圖.24、解:由題意作示意圖如下;
【分析】【分析】由題意作示意圖。25、解:程序框圖如下:
【分析】【分析】該函數(shù)是分段函數(shù),當(dāng)x取不同范圍內(nèi)的值時(shí),函數(shù)解析式不同,因此當(dāng)給出一個(gè)自變量x的值時(shí),必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因?yàn)楹瘮?shù)解析式分了三段,所以判斷框需要兩個(gè),即進(jìn)行兩次判斷,于是,即可畫出相應(yīng)的程序框圖.五、證明題(共4題,共8分)26、略
【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點(diǎn)共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點(diǎn)共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.27、略
【分析】【分析】(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長(zhǎng)度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.28、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線交點(diǎn)疊合.
(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長(zhǎng)為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長(zhǎng)為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長(zhǎng)兩段,每段各長(zhǎng)l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長(zhǎng)為半徑的圓紙片可以覆蓋住整個(gè)線圈.29、略
【分析】【分析】首先作CD關(guān)于AB的對(duì)稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點(diǎn)共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對(duì)稱直線FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四點(diǎn)共圓.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.六、綜合題(共2題,共6分)30、略
【分析】【分析】根據(jù)矩形的性質(zhì),利用矩形邊長(zhǎng)得出A,B,C三點(diǎn)的坐標(biāo),再利用待定系數(shù)法求出二次函數(shù)解析式即可.【解析】【解答】解:∵沿著兩條坐標(biāo)軸擺著三個(gè)相同的長(zhǎng)方形;其長(zhǎng);寬分別為4、2;
∴A點(diǎn)的坐標(biāo)為:(-4;2),B點(diǎn)的坐標(biāo)為:(-2,6),C點(diǎn)的坐標(biāo)為:(2,4);
將A,B,C代入y=ax2+bx+c;
;
解得:;
∴二次函數(shù)解析式為:y=-x2-x+.
故答案為:y=-x2-x+.31、略
【分析】【分析】(1)把頂點(diǎn)A的坐標(biāo)代入直線的解析式得出c=a+;根據(jù)根與系數(shù)的關(guān)系求出c=1-3a,得出方程組,求出方程組的解即可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能倉(cāng)儲(chǔ)貨物質(zhì)押融資服務(wù)合同3篇
- 二零二五年度研討會(huì)策劃委托合同3篇
- 內(nèi)蒙古包頭市東河區(qū)重點(diǎn)名校2025屆中考生物考前最后一卷含解析
- 2025年度離婚后財(cái)產(chǎn)分割與分配協(xié)議書4篇
- 二零二五年男方房產(chǎn)歸男方無(wú)債務(wù)離婚協(xié)議書范本詳細(xì)說(shuō)明3篇
- 2025年度鋁灰資源化處理生產(chǎn)線建設(shè)合同3篇
- 2025年水庫(kù)水資源開(kāi)發(fā)承包合同范本3篇
- 2025技師行業(yè)數(shù)據(jù)分析與市場(chǎng)研究合同3篇
- 二零二五年電動(dòng)汽車銷售與綠色出行補(bǔ)貼政策執(zhí)行合同3篇
- 2025年度科技創(chuàng)新園區(qū)場(chǎng)地調(diào)研與扶持合同4篇
- 春節(jié)文化常識(shí)單選題100道及答案
- 12123交管學(xué)法減分考試題及答案
- 2024年杭州師范大學(xué)附屬醫(yī)院招聘高層次緊缺專業(yè)人才筆試真題
- 制造業(yè)BCM業(yè)務(wù)連續(xù)性管理培訓(xùn)
- 商場(chǎng)停車場(chǎng)管理制度
- 24年追覓在線測(cè)評(píng)28題及答案
- TGDNAS 043-2024 成人靜脈中等長(zhǎng)度導(dǎo)管置管技術(shù)
- 《陸上風(fēng)電場(chǎng)工程概算定額》NBT 31010-2019
- 皮帶輸送機(jī)工程施工電氣安裝措施要點(diǎn)
- 藥房(冰柜)溫濕度表
- QJ903.9A-1995航天產(chǎn)品工藝文件管理制度管理用工藝文件編制規(guī)則
評(píng)論
0/150
提交評(píng)論