鄭州澍青醫(yī)學高等??茖W校《深度學習及應(yīng)用》2023-2024學年第一學期期末試卷_第1頁
鄭州澍青醫(yī)學高等??茖W?!渡疃葘W習及應(yīng)用》2023-2024學年第一學期期末試卷_第2頁
鄭州澍青醫(yī)學高等??茖W?!渡疃葘W習及應(yīng)用》2023-2024學年第一學期期末試卷_第3頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁鄭州澍青醫(yī)學高等??茖W校《深度學習及應(yīng)用》

2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、深度學習模型在圖像識別任務(wù)中取得了顯著的成果。假設(shè)要訓練一個深度卷積神經(jīng)網(wǎng)絡(luò)來識別不同種類的動物,以下關(guān)于模型訓練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識別準確率,層數(shù)越多越好B.訓練數(shù)據(jù)的數(shù)量和質(zhì)量對模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計C.模型在訓練集上的準確率很高,但在測試集上的準確率很低,可能是出現(xiàn)了過擬合現(xiàn)象D.深度學習模型不需要進行調(diào)參和優(yōu)化,直接使用默認參數(shù)就能得到較好的結(jié)果2、人工智能在金融領(lǐng)域的風險管理中具有潛在應(yīng)用價值。假設(shè)一家銀行要利用人工智能評估客戶的信用風險,以下關(guān)于其應(yīng)用的描述,哪一項是不準確的?()A.可以分析客戶的交易記錄、財務(wù)狀況等多維度數(shù)據(jù),進行信用評估B.深度學習模型能夠自動提取數(shù)據(jù)中的隱藏特征,提高信用評估的準確性C.人工智能評估的信用結(jié)果可以完全取代傳統(tǒng)的信用評估方法,無需人工審核D.為了保證評估的公正性和可靠性,需要對人工智能模型進行定期監(jiān)測和驗證3、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用包括作物監(jiān)測、病蟲害預測等。假設(shè)要利用人工智能技術(shù)預測農(nóng)作物的病蟲害發(fā)生情況,以下關(guān)于農(nóng)業(yè)領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.僅依靠氣象數(shù)據(jù)就能準確預測農(nóng)作物的病蟲害發(fā)生B.人工智能在農(nóng)業(yè)中的應(yīng)用成本過高,不具有實際推廣價值C.綜合考慮農(nóng)作物的生長環(huán)境、圖像數(shù)據(jù)和歷史病蟲害信息等,可以提高病蟲害預測的準確性D.農(nóng)業(yè)領(lǐng)域的數(shù)據(jù)質(zhì)量和多樣性對人工智能應(yīng)用的效果沒有影響4、在人工智能的語音識別任務(wù)中,噪聲環(huán)境會對識別準確率產(chǎn)生顯著影響。假設(shè)要提高在嘈雜環(huán)境下的語音識別性能,以下哪種方法可能最有效?()A.增加訓練數(shù)據(jù)中的噪聲樣本B.使用更復雜的聲學模型C.優(yōu)化語音信號的預處理D.提高麥克風的質(zhì)量5、情感計算是人工智能的一個新興領(lǐng)域,旨在讓計算機理解和處理人類的情感。假設(shè)要開發(fā)一個能夠識別用戶情感狀態(tài)的系統(tǒng)。以下關(guān)于情感計算的描述,哪一項是不準確的?()A.可以通過分析語音、面部表情和文本等多模態(tài)信息來判斷情感B.情感計算的應(yīng)用可以包括心理咨詢、客戶服務(wù)等領(lǐng)域C.目前的情感計算技術(shù)已經(jīng)能夠準確無誤地識別和理解所有復雜的人類情感D.情感模型的訓練需要大量標注了情感標簽的數(shù)據(jù)6、在人工智能的倫理和社會影響方面,存在許多值得關(guān)注的問題。假設(shè)人工智能系統(tǒng)在招聘過程中被用于篩選候選人,以下關(guān)于這種應(yīng)用的說法,哪一項是需要謹慎考慮的?()A.可以完全避免人為的偏見和不公平B.可能會因為數(shù)據(jù)偏差導致某些群體受到不公平對待C.其決策結(jié)果應(yīng)該無條件被接受和執(zhí)行D.不需要對其進行監(jiān)管和評估7、人工智能在金融風險管理中的應(yīng)用逐漸增多。假設(shè)要利用人工智能模型預測市場風險,以下關(guān)于模型評估指標的選擇,哪一項是最重要的?()A.準確率,即模型正確預測的比例B.召回率,即模型正確識別出風險的比例C.F1值,綜合考慮準確率和召回率D.均方誤差,衡量模型預測值與實際值之間的差異8、強化學習是人工智能的一個重要分支,常用于訓練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個智能機器人需要在迷宮中找到出口,通過與環(huán)境的交互獲得獎勵。在這種情況下,以下關(guān)于強化學習算法的選擇,哪一項是最合適的?()A.Q-learning算法,通過估計狀態(tài)-動作值函數(shù)來選擇最優(yōu)動作B.策略梯度算法,直接優(yōu)化策略以最大化期望回報C.蒙特卡羅方法,通過隨機采樣來估計價值函數(shù)D.以上算法都不合適,應(yīng)該選擇其他方法9、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機制C.對抗生成網(wǎng)絡(luò)D.以上都是10、人工智能中的聯(lián)邦學習是一種新興的技術(shù),旨在保護數(shù)據(jù)隱私的前提下進行模型訓練。假設(shè)多個機構(gòu)想要聯(lián)合訓練一個人工智能模型,但又不希望共享各自的數(shù)據(jù)。那么,聯(lián)邦學習是如何實現(xiàn)這一目標的?()A.將所有數(shù)據(jù)集中到一個中心服務(wù)器進行訓練B.每個機構(gòu)只上傳模型參數(shù),在云端進行聚合C.通過加密技術(shù)直接共享原始數(shù)據(jù)進行訓練D.不需要數(shù)據(jù)交互,各自獨立訓練模型11、對于一個智能聊天機器人,需要理解用戶輸入的自然語言并生成合理的回復。假設(shè)用戶提出了一個復雜且含義模糊的問題,聊天機器人要準確理解用戶的意圖并提供有用的回答。以下哪種技術(shù)或方法對于提高聊天機器人的理解和生成能力是關(guān)鍵的?()A.構(gòu)建大規(guī)模的語料庫,通過匹配來生成回復B.運用深度學習模型,如Transformer架構(gòu)進行訓練C.基于模板的回復生成,限制回復的多樣性D.不考慮上下文,只根據(jù)問題的關(guān)鍵詞生成回復12、在人工智能的語音識別任務(wù)中,為了提高在嘈雜環(huán)境下的識別準確率,以下哪種技術(shù)或方法可能會被重點研究和應(yīng)用?()A.聲學模型的改進B.噪聲抑制技術(shù)C.多模態(tài)信息融合D.以上都是13、人工智能中的語音識別技術(shù)在許多領(lǐng)域都有應(yīng)用,如語音助手和智能客服。假設(shè)正在改進一個語音識別系統(tǒng)的性能,以下關(guān)于語音識別的描述,正確的是:()A.語音識別的準確率只取決于聲學模型,語言模型對其影響不大B.環(huán)境噪聲對語音識別的結(jié)果沒有顯著影響,系統(tǒng)可以自動過濾噪聲C.不斷優(yōu)化聲學模型和語言模型,并結(jié)合大量的語音數(shù)據(jù)進行訓練,可以提高語音識別的準確率D.語音識別系統(tǒng)不需要考慮不同人的口音和語速差異,能夠統(tǒng)一處理14、在人工智能的模型訓練中,過擬合是一個常見的問題。假設(shè)一個模型在訓練集上表現(xiàn)非常好,但在測試集上性能很差。為了緩解過擬合,以下哪種方法是有效的?()A.增加訓練數(shù)據(jù)的數(shù)量B.減少模型的復雜度C.應(yīng)用正則化技術(shù),如L1和L2正則化D.以上都是15、在人工智能的自然語言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開發(fā)一個能夠自動生成新聞報道的系統(tǒng),以下關(guān)于自然語言生成的描述,正確的是:()A.隨機生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報道B.僅僅依靠語言模型的概率預測,不考慮語義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學習模型學習大量的新聞文本數(shù)據(jù),并結(jié)合語義理解和規(guī)劃,可以生成較為準確和流暢的新聞報道D.自然語言生成系統(tǒng)不需要考慮語言的風格和體裁,能夠生成通用的文本二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋生成對抗網(wǎng)絡(luò)的原理和用途。2、(本題5分)說明人工智能在文化傳承和創(chuàng)新中的角色。3、(本題5分)解釋人工智能在智能企業(yè)文化評估中的作用。三、操作題(本大題共5個小題,共25分)1、(本題5分)運用Python中的Keras庫,搭建一個基于深度玻爾茲曼機(DBM)的模型,對數(shù)據(jù)進行特征學習和分類。2、(本題5分)利用Python的OpenCV庫,實現(xiàn)對圖像的FAST角點檢測。分析檢測結(jié)果的準確性和實時性。3、(本題5分)運用深度學習框架構(gòu)建一個人臉識別模型,實現(xiàn)人臉檢測和識別功能,提高準確率和魯棒性。4、(本題5分)使用自然語言處理技術(shù),對醫(yī)療病歷進行信息抽取和病情診斷輔助。提取病歷中的癥狀、檢查結(jié)果和治療方案等關(guān)鍵信息,構(gòu)建診斷模型,評估模型在輔助醫(yī)生診斷方面的準確性和實用性。5、(本題5分)利用PyTorch構(gòu)建一個知識圖譜嵌入模型,將知識圖譜中的實體和關(guān)系映射到低維向量空間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論