版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁北京衛(wèi)生職業(yè)學(xué)院《排版設(shè)計(jì)》
2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是對(duì)視頻中人物或物體的動(dòng)作進(jìn)行分類和理解。假設(shè)要識(shí)別一段舞蹈視頻中的各種舞蹈動(dòng)作,同時(shí)要考慮動(dòng)作的速度、幅度和風(fēng)格的變化。以下哪種動(dòng)作識(shí)別方法在處理這種復(fù)雜的動(dòng)作模式時(shí)表現(xiàn)更好?()A.基于手工特征的動(dòng)作識(shí)別B.基于時(shí)空興趣點(diǎn)的動(dòng)作識(shí)別C.基于深度學(xué)習(xí)的時(shí)空卷積網(wǎng)絡(luò)D.基于隱馬爾可夫模型的動(dòng)作識(shí)別2、在計(jì)算機(jī)視覺的圖像分類任務(wù)中,假設(shè)要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會(huì)對(duì)結(jié)果產(chǎn)生明顯影響B(tài).過采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導(dǎo)致過擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會(huì)丟失部分有用信息D.類別不均衡問題無法通過數(shù)據(jù)處理方法解決,只能通過改進(jìn)分類算法來應(yīng)對(duì)3、計(jì)算機(jī)視覺中的場(chǎng)景理解需要從圖像中推斷出物體之間的關(guān)系和場(chǎng)景的語義信息。假設(shè)要理解一張室內(nèi)辦公室場(chǎng)景的圖像,包括家具的布局、人員的活動(dòng)等。以下哪種方法在進(jìn)行場(chǎng)景理解時(shí)最為有效?()A.基于對(duì)象檢測(cè)和分類的方法B.基于圖模型的場(chǎng)景表示C.基于深度學(xué)習(xí)的場(chǎng)景解析D.基于規(guī)則推理的方法4、在計(jì)算機(jī)視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說法,錯(cuò)誤的是()A.可以通過生成對(duì)抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進(jìn)行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強(qiáng)和虛擬場(chǎng)景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實(shí)性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制5、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個(gè)或多個(gè)運(yùn)動(dòng)目標(biāo)。假設(shè)要跟蹤一個(gè)在操場(chǎng)上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來實(shí)現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無論目標(biāo)的運(yùn)動(dòng)速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤6、圖像檢索是計(jì)算機(jī)視覺的一個(gè)重要應(yīng)用。假設(shè)我們要在一個(gè)大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像,以下哪種圖像表示方法可能對(duì)提高檢索效率有幫助?()A.全局特征表示B.局部特征表示C.基于深度學(xué)習(xí)的特征表示D.基于顏色直方圖的特征表示7、計(jì)算機(jī)視覺中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要估計(jì)一段視頻中物體的運(yùn)動(dòng)速度和方向,以下關(guān)于光流估計(jì)方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計(jì)方法在復(fù)雜場(chǎng)景中能夠準(zhǔn)確計(jì)算光流B.深度學(xué)習(xí)中的光流估計(jì)網(wǎng)絡(luò)不需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練C.光流估計(jì)的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時(shí)空信息的深度學(xué)習(xí)光流估計(jì)方法能夠提高估計(jì)的準(zhǔn)確性和魯棒性8、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像超分辨率重建任務(wù),將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種深度學(xué)習(xí)模型可能在重建效果上表現(xiàn)出色?()A.SRCNNB.ESPCNC.DRCND.以上都是9、在一個(gè)基于計(jì)算機(jī)視覺的無人駕駛系統(tǒng)中,需要對(duì)道路場(chǎng)景進(jìn)行理解和預(yù)測(cè),例如判斷前方是否有行人橫穿馬路。為了實(shí)現(xiàn)準(zhǔn)確的場(chǎng)景理解和預(yù)測(cè),以下哪種技術(shù)可能是關(guān)鍵?()A.語義分割B.實(shí)例分割C.場(chǎng)景圖生成D.以上都是10、在計(jì)算機(jī)視覺中,目標(biāo)檢測(cè)是一項(xiàng)重要的任務(wù)。假設(shè)要開發(fā)一個(gè)能夠在城市交通場(chǎng)景中檢測(cè)車輛和行人的系統(tǒng)。以下關(guān)于目標(biāo)檢測(cè)算法的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的因素?()A.算法的檢測(cè)速度,以滿足實(shí)時(shí)性要求B.算法在小目標(biāo)檢測(cè)上的性能,因?yàn)檐囕v和行人在圖像中可能較小C.算法的模型復(fù)雜度,越復(fù)雜的模型效果越好D.算法是否開源,開源的算法更易于使用11、在計(jì)算機(jī)視覺的視頻監(jiān)控系統(tǒng)中,異常事件檢測(cè)是重要功能之一。假設(shè)要在一個(gè)倉庫的監(jiān)控視頻中檢測(cè)出異常的人員活動(dòng)或物品移動(dòng)。以下哪種異常事件檢測(cè)方法在處理這種大規(guī)模視頻數(shù)據(jù)時(shí)能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測(cè)B.基于統(tǒng)計(jì)模型的檢測(cè)C.基于深度學(xué)習(xí)的檢測(cè)D.基于人工觀察的檢測(cè)12、在計(jì)算機(jī)視覺中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含眾多物體的復(fù)雜圖像中準(zhǔn)確檢測(cè)出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復(fù)雜。為了實(shí)現(xiàn)高精度的車輛檢測(cè),以下哪種方法通常被認(rèn)為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測(cè)和形態(tài)學(xué)操作B.使用基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNNC.采用簡單的模板匹配方法,根據(jù)預(yù)先定義的車輛模板進(jìn)行匹配D.對(duì)圖像進(jìn)行全局特征提取,然后基于這些特征進(jìn)行分類13、計(jì)算機(jī)視覺中的圖像配準(zhǔn)是將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進(jìn)行配準(zhǔn),以下關(guān)于圖像配準(zhǔn)方法的描述,哪一項(xiàng)是不正確的?()A.基于特征的圖像配準(zhǔn)方法通過提取圖像中的顯著特征,并進(jìn)行匹配來實(shí)現(xiàn)配準(zhǔn)B.基于灰度的圖像配準(zhǔn)方法直接比較圖像的灰度值,計(jì)算相似性度量來完成配準(zhǔn)C.圖像配準(zhǔn)的精度主要取決于特征提取的準(zhǔn)確性和匹配算法的性能D.圖像配準(zhǔn)總是能夠完美地將兩張圖像對(duì)齊,不存在任何誤差14、在計(jì)算機(jī)視覺的文本檢測(cè)和識(shí)別任務(wù)中,假設(shè)要從一張圖片中提取并識(shí)別其中的文字信息。以下關(guān)于文本檢測(cè)和識(shí)別的描述,哪一項(xiàng)是不正確的?()A.可以先通過文本檢測(cè)算法定位圖片中的文本區(qū)域,然后進(jìn)行識(shí)別B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在文本識(shí)別中表現(xiàn)出色,能夠準(zhǔn)確識(shí)別各種字體和風(fēng)格的文字C.文本檢測(cè)和識(shí)別對(duì)于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對(duì),沒有任何困難D.可以結(jié)合光學(xué)字符識(shí)別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本15、在計(jì)算機(jī)視覺的圖像增強(qiáng)任務(wù)中,假設(shè)要提高一張低光照?qǐng)D像的質(zhì)量。以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級(jí),但可能會(huì)導(dǎo)致細(xì)節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時(shí)也會(huì)模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對(duì)于低光照?qǐng)D像效果不佳D.所有的圖像增強(qiáng)方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)說明計(jì)算機(jī)視覺在城市規(guī)劃中的作用。2、(本題5分)描述計(jì)算機(jī)視覺在海洋氣象預(yù)報(bào)中的應(yīng)用。3、(本題5分)計(jì)算機(jī)視覺中如何檢測(cè)產(chǎn)品表面缺陷?4、(本題5分)解釋計(jì)算機(jī)視覺中的聯(lián)邦學(xué)習(xí)在分布式數(shù)據(jù)處理中的應(yīng)用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)設(shè)計(jì)一個(gè)基于計(jì)算機(jī)視覺的指靜脈識(shí)別系統(tǒng)。2、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測(cè)商場(chǎng)自動(dòng)扶梯的運(yùn)行狀況。3、(本題5分)開發(fā)一個(gè)能夠識(shí)別不同種類食肉動(dòng)物的計(jì)算機(jī)視覺系統(tǒng)。4、(本題5分)通過圖像分類算法,對(duì)不同風(fēng)格的珠寶設(shè)計(jì)圖像進(jìn)行分類。5、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測(cè)消防器材的有效期。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)觀察某溫泉度假村的宣傳冊(cè)設(shè)計(jì),分析其如何通過溫馨的畫面、舒適的文字描述、服務(wù)項(xiàng)目介紹等吸引游客前來度假。2、(本題10分)分析某飲料品牌的戶外廣告設(shè)計(jì),研究其如何在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 福州軟件職業(yè)技術(shù)學(xué)院《智能制造創(chuàng)新創(chuàng)業(yè)實(shí)訓(xùn)智造創(chuàng)新工場(chǎng)認(rèn)知與數(shù)據(jù)管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖南涉外經(jīng)濟(jì)學(xué)院《現(xiàn)代工程管理基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 深圳信息職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)運(yùn)維實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 衢州職業(yè)技術(shù)學(xué)院《心理咨詢基本技能訓(xùn)練(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 民辦萬博科技職業(yè)學(xué)院《鄉(xiāng)土地理齊魯風(fēng)貌》2023-2024學(xué)年第二學(xué)期期末試卷
- 長春信息技術(shù)職業(yè)學(xué)院《遙感軟件應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西服裝學(xué)院《海底構(gòu)造地質(zhì)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西應(yīng)用科技學(xué)院《材料成型專業(yè)安全概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 蘇州工業(yè)職業(yè)技術(shù)學(xué)院《大學(xué)體育籃球》2023-2024學(xué)年第二學(xué)期期末試卷
- 二零二五年度籃球賽事球員合同續(xù)約談判合同
- 2025年廣東省春季高考英語情景交際題專項(xiàng)練習(xí)(含答案)
- 教育部《中小學(xué)校園食品安全和膳食經(jīng)費(fèi)管理工作指引》知識(shí)培訓(xùn)
- 部編人教版語文小學(xué)六年級(jí)下冊(cè)第四單元主講教材解讀(集體備課)
- 節(jié)后復(fù)工安全教育培訓(xùn)內(nèi)容【5篇】
- 營養(yǎng)學(xué)緒論(精)
- EN779-2012一般通風(fēng)過濾器——過濾性能測(cè)定(中文版)
- 最新ICD-9手術(shù)編碼
- 軟件項(xiàng)目報(bào)價(jià)方法參考模板
- 國際形式發(fā)票模板
- 跟單人員績效考核表
- 淺談干熄爐預(yù)存室壓力調(diào)節(jié)與控制
評(píng)論
0/150
提交評(píng)論