武漢海事職業(yè)學(xué)院《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
武漢海事職業(yè)學(xué)院《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
武漢海事職業(yè)學(xué)院《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
武漢海事職業(yè)學(xué)院《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)武漢海事職業(yè)學(xué)院

《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在大數(shù)據(jù)分析中,以下哪種可視化工具常用于展示數(shù)據(jù)的分布和趨勢(shì)?()A.柱狀圖B.餅圖C.折線圖D.雷達(dá)圖2、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),需要考慮系統(tǒng)的性能優(yōu)化。以下哪種方法對(duì)于提高大數(shù)據(jù)處理系統(tǒng)的性能最有效?()A.增加硬件資源,如內(nèi)存和CPUB.優(yōu)化數(shù)據(jù)存儲(chǔ)結(jié)構(gòu)和算法C.減少數(shù)據(jù)量D.以上方法結(jié)合使用3、大數(shù)據(jù)在市場(chǎng)營(yíng)銷中的應(yīng)用能夠帶來(lái)諸多好處,以下哪一項(xiàng)不是其帶來(lái)的好處?()A.更精準(zhǔn)的市場(chǎng)細(xì)分B.更有效的客戶關(guān)系管理C.降低營(yíng)銷成本D.消除市場(chǎng)競(jìng)爭(zhēng)4、在大數(shù)據(jù)的背景下,數(shù)據(jù)血緣關(guān)系的追蹤變得重要。假設(shè)一個(gè)數(shù)據(jù)分析項(xiàng)目涉及多個(gè)數(shù)據(jù)轉(zhuǎn)換和處理步驟,需要清楚地了解數(shù)據(jù)的來(lái)源和流向。以下哪種方法最能有效地追蹤數(shù)據(jù)的血緣關(guān)系?()A.使用數(shù)據(jù)治理工具B.手動(dòng)記錄數(shù)據(jù)的轉(zhuǎn)換過(guò)程C.基于元數(shù)據(jù)的追蹤D.以上方法結(jié)合使用5、在大數(shù)據(jù)安全和隱私保護(hù)方面,面臨著諸多挑戰(zhàn)。對(duì)于大數(shù)據(jù)安全的措施和原則,以下說(shuō)法錯(cuò)誤的是:()A.采用加密技術(shù)對(duì)敏感數(shù)據(jù)進(jìn)行加密存儲(chǔ)和傳輸,以防止數(shù)據(jù)泄露B.實(shí)施嚴(yán)格的訪問(wèn)控制策略,確保只有授權(quán)人員能夠訪問(wèn)和處理數(shù)據(jù)C.數(shù)據(jù)匿名化和脫敏處理可以在一定程度上保護(hù)用戶隱私,但不能完全消除隱私風(fēng)險(xiǎn)D.為了提高數(shù)據(jù)的可用性,應(yīng)盡量減少安全措施和限制,方便數(shù)據(jù)的共享和使用6、大數(shù)據(jù)技術(shù)在醫(yī)療領(lǐng)域有廣泛的應(yīng)用前景。假設(shè)一家醫(yī)院想要利用大數(shù)據(jù)提升醫(yī)療服務(wù)質(zhì)量。以下哪種應(yīng)用方式最有潛力?()A.分析患者的病歷數(shù)據(jù),預(yù)測(cè)疾病的發(fā)生和發(fā)展B.利用大數(shù)據(jù)優(yōu)化醫(yī)院的物資管理和庫(kù)存控制C.根據(jù)醫(yī)生的工作習(xí)慣和患者流量,合理安排醫(yī)療資源D.以上應(yīng)用方式都具有重要價(jià)值,應(yīng)綜合實(shí)施7、大數(shù)據(jù)的價(jià)值在于能夠從海量數(shù)據(jù)中挖掘出有意義的信息和知識(shí)。假設(shè)一家金融機(jī)構(gòu)擁有大量客戶的交易數(shù)據(jù),想要預(yù)測(cè)客戶的信用風(fēng)險(xiǎn)。以下哪種數(shù)據(jù)分析方法可能最有效?()A.描述性統(tǒng)計(jì)分析,總結(jié)數(shù)據(jù)的基本特征B.關(guān)聯(lián)規(guī)則挖掘,發(fā)現(xiàn)不同交易之間的關(guān)聯(lián)C.聚類分析,將客戶分為不同的風(fēng)險(xiǎn)類別D.回歸分析,建立信用風(fēng)險(xiǎn)與交易數(shù)據(jù)的數(shù)學(xué)模型8、在大數(shù)據(jù)的分類任務(wù)中,支持向量機(jī)(SVM)是一種有效的算法。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集需要進(jìn)行分類,以下關(guān)于SVM的特點(diǎn),哪一項(xiàng)是不正確的?()A.能夠處理線性不可分的數(shù)據(jù),通過(guò)核函數(shù)將數(shù)據(jù)映射到高維空間B.對(duì)大規(guī)模數(shù)據(jù)集的訓(xùn)練效率較高C.對(duì)異常值比較敏感D.尋找具有最大間隔的超平面進(jìn)行分類9、在大數(shù)據(jù)存儲(chǔ)方面,NoSQL數(shù)據(jù)庫(kù)與傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)相比,具有一些獨(dú)特的優(yōu)勢(shì)。以下哪項(xiàng)不是NoSQL數(shù)據(jù)庫(kù)的主要特點(diǎn)?()A.支持復(fù)雜的關(guān)聯(lián)查詢B.靈活的數(shù)據(jù)模型C.良好的可擴(kuò)展性D.高并發(fā)讀寫(xiě)性能10、在大數(shù)據(jù)處理中,數(shù)據(jù)挖掘的過(guò)程包括數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)挖掘、結(jié)果解釋等步驟,以下關(guān)于數(shù)據(jù)挖掘過(guò)程的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)準(zhǔn)備包括數(shù)據(jù)清洗、數(shù)據(jù)集成、數(shù)據(jù)轉(zhuǎn)換等步驟B.數(shù)據(jù)挖掘可以使用多種算法,如分類、聚類、關(guān)聯(lián)分析等C.結(jié)果解釋需要結(jié)合具體的業(yè)務(wù)背景和數(shù)據(jù)特點(diǎn)進(jìn)行D.數(shù)據(jù)挖掘的過(guò)程只需要進(jìn)行一次,不需要進(jìn)行多次迭代和優(yōu)化11、在大數(shù)據(jù)處理中,常常需要進(jìn)行數(shù)據(jù)融合。假設(shè)有多個(gè)來(lái)源的數(shù)據(jù),包含相同或相似的信息,但格式和字段名稱不同。以下哪種技術(shù)可以用于實(shí)現(xiàn)數(shù)據(jù)融合?()A.ETL(Extract,Transform,Load)B.數(shù)據(jù)清洗C.數(shù)據(jù)標(biāo)準(zhǔn)化D.Alloftheabove(以上皆是)12、大數(shù)據(jù)安全防護(hù)措施有很多種,以下關(guān)于大數(shù)據(jù)安全防護(hù)措施的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)安全防護(hù)措施包括數(shù)據(jù)加密、訪問(wèn)控制、數(shù)據(jù)備份等B.大數(shù)據(jù)安全防護(hù)措施需要根據(jù)數(shù)據(jù)的敏感程度和價(jià)值進(jìn)行分級(jí)保護(hù)C.大數(shù)據(jù)安全防護(hù)措施只需要關(guān)注數(shù)據(jù)存儲(chǔ)和傳輸?shù)陌踩?,不需要關(guān)注數(shù)據(jù)處理的安全D.大數(shù)據(jù)安全防護(hù)措施需要建立完善的安全管理體系和應(yīng)急預(yù)案13、在處理大規(guī)模的大數(shù)據(jù)集時(shí),常常需要對(duì)數(shù)據(jù)進(jìn)行清洗和預(yù)處理。假設(shè)一個(gè)包含了用戶購(gòu)物行為的數(shù)據(jù)集,其中存在大量缺失值、重復(fù)數(shù)據(jù)和異常值。以下哪種數(shù)據(jù)清洗方法最適合處理這種情況,同時(shí)能夠最大程度地保留有用信息并提高數(shù)據(jù)質(zhì)量?()A.直接刪除包含缺失值、重復(fù)數(shù)據(jù)和異常值的記錄B.通過(guò)統(tǒng)計(jì)方法填充缺失值,去除重復(fù)數(shù)據(jù),并使用聚類算法識(shí)別和處理異常值C.對(duì)缺失值進(jìn)行隨機(jī)填充,保留重復(fù)數(shù)據(jù),忽略異常值D.不進(jìn)行任何處理,直接使用原始數(shù)據(jù)進(jìn)行分析14、在處理大規(guī)模文本數(shù)據(jù)時(shí),以下哪種技術(shù)常用于提取關(guān)鍵信息和主題?()A.自然語(yǔ)言處理B.圖像識(shí)別C.音頻處理D.虛擬現(xiàn)實(shí)15、在大數(shù)據(jù)存儲(chǔ)中,為了提高數(shù)據(jù)的讀寫(xiě)性能,通常會(huì)采用分布式存儲(chǔ)架構(gòu)。以下關(guān)于分布式存儲(chǔ)的描述,錯(cuò)誤的是?()A.數(shù)據(jù)被分散存儲(chǔ)在多個(gè)節(jié)點(diǎn)上B.可以通過(guò)增加節(jié)點(diǎn)來(lái)擴(kuò)展存儲(chǔ)容量C.節(jié)點(diǎn)之間的通信開(kāi)銷對(duì)性能影響較小D.數(shù)據(jù)的一致性維護(hù)是一個(gè)重要問(wèn)題16、大數(shù)據(jù)在人力資源管理中的應(yīng)用可以提高管理效率,以下關(guān)于大數(shù)據(jù)在人力資源中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析員工數(shù)據(jù)進(jìn)行人才選拔和招聘B.有助于制定個(gè)性化的員工培訓(xùn)和發(fā)展計(jì)劃C.大數(shù)據(jù)在人力資源管理中的應(yīng)用會(huì)導(dǎo)致員工個(gè)人隱私泄露的風(fēng)險(xiǎn)增加D.能夠優(yōu)化員工的工作安排和團(tuán)隊(duì)組合17、在大數(shù)據(jù)分析中,為了評(píng)估模型的性能和準(zhǔn)確性,以下哪種指標(biāo)通常被使用?()A.準(zhǔn)確率B.召回率C.F1值D.以上都是18、大數(shù)據(jù)分析中的預(yù)測(cè)模型需要不斷評(píng)估和優(yōu)化。假設(shè)我們建立了一個(gè)銷售預(yù)測(cè)模型,以下哪種方法最適合評(píng)估模型的性能?()A.比較預(yù)測(cè)值與實(shí)際值的差異,計(jì)算均方誤差等指標(biāo)B.觀察模型的復(fù)雜程度,越復(fù)雜的模型性能越好C.根據(jù)模型的訓(xùn)練時(shí)間,訓(xùn)練時(shí)間短的模型性能更優(yōu)D.由專家主觀判斷模型的準(zhǔn)確性19、大數(shù)據(jù)分析平臺(tái)有很多種,以下關(guān)于大數(shù)據(jù)分析平臺(tái)的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)分析平臺(tái)可以提供數(shù)據(jù)存儲(chǔ)、處理、分析等功能B.大數(shù)據(jù)分析平臺(tái)可以支持多種數(shù)據(jù)分析算法和工具C.大數(shù)據(jù)分析平臺(tái)只適用于大規(guī)模企業(yè),不適用于中小企業(yè)D.大數(shù)據(jù)分析平臺(tái)需要具備高可用性和可擴(kuò)展性20、在處理大數(shù)據(jù)時(shí),數(shù)據(jù)壓縮技術(shù)可以節(jié)省存儲(chǔ)空間和提高傳輸效率。以下哪種數(shù)據(jù)壓縮算法常用于大數(shù)據(jù)處理?()A.ZIP算法B.GZIP算法C.LZ77算法D.以上都是21、在大數(shù)據(jù)項(xiàng)目的實(shí)施過(guò)程中,項(xiàng)目管理至關(guān)重要。以下哪個(gè)階段在項(xiàng)目管理中最為關(guān)鍵?()A.需求分析B.設(shè)計(jì)開(kāi)發(fā)C.測(cè)試上線D.運(yùn)維監(jiān)控22、大數(shù)據(jù)的處理需要考慮數(shù)據(jù)的分布和并行性。假設(shè)一個(gè)計(jì)算任務(wù)可以被分解為多個(gè)子任務(wù),并在多個(gè)節(jié)點(diǎn)上并行執(zhí)行。以下哪種數(shù)據(jù)分布方式最能提高并行計(jì)算的效率?()A.隨機(jī)分布B.哈希分布C.范圍分布D.復(fù)制分布23、在大數(shù)據(jù)的關(guān)聯(lián)規(guī)則挖掘中,Apriori算法是一種經(jīng)典的算法。假設(shè)我們有一個(gè)超市銷售數(shù)據(jù)集,需要挖掘商品之間的關(guān)聯(lián)規(guī)則。以下關(guān)于Apriori算法的特點(diǎn),哪一項(xiàng)是不正確的?()A.基于頻繁項(xiàng)集的先驗(yàn)知識(shí)進(jìn)行挖掘B.計(jì)算復(fù)雜度較高,不適用于大規(guī)模數(shù)據(jù)集C.能夠發(fā)現(xiàn)強(qiáng)關(guān)聯(lián)規(guī)則,但可能會(huì)忽略一些弱關(guān)聯(lián)規(guī)則D.對(duì)數(shù)據(jù)的噪聲和缺失值不敏感24、在大數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種重要的技術(shù)手段。假設(shè)有一個(gè)電商網(wǎng)站的銷售數(shù)據(jù),需要挖掘出哪些商品經(jīng)常被一起購(gòu)買,從而進(jìn)行商品推薦。以下哪種數(shù)據(jù)挖掘算法適用于這種關(guān)聯(lián)分析?()A.Apriori算法B.KNN(K-NearestNeighbor)算法C.C4.5算法D.SVM(SupportVectorMachine)算法25、大數(shù)據(jù)在醫(yī)療健康領(lǐng)域的應(yīng)用包括疾病預(yù)測(cè)、醫(yī)療影像分析、健康管理等,以下關(guān)于大數(shù)據(jù)在醫(yī)療健康領(lǐng)域應(yīng)用的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可以用于疾病預(yù)測(cè)和預(yù)防,提高醫(yī)療服務(wù)的質(zhì)量和效率B.大數(shù)據(jù)可以用于醫(yī)療影像分析,提高診斷的準(zhǔn)確性和速度C.大數(shù)據(jù)可以用于健康管理,幫助人們更好地管理自己的健康D.大數(shù)據(jù)在醫(yī)療健康領(lǐng)域的應(yīng)用只局限于醫(yī)院內(nèi)部,不能與其他機(jī)構(gòu)進(jìn)行數(shù)據(jù)共享26、大數(shù)據(jù)的處理通常需要分布式計(jì)算框架來(lái)提高效率。假設(shè)有一個(gè)需要對(duì)海量文本數(shù)據(jù)進(jìn)行詞頻統(tǒng)計(jì)的任務(wù),數(shù)據(jù)量達(dá)到數(shù)百TB。以下哪種分布式計(jì)算框架最適合處理這種大規(guī)模的數(shù)據(jù)處理任務(wù)?()A.HadoopMapReduceB.SparkC.FlinkD.Storm27、在大數(shù)據(jù)處理中,數(shù)據(jù)可視化的設(shè)計(jì)非常重要,以下關(guān)于數(shù)據(jù)可視化設(shè)計(jì)的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)可視化設(shè)計(jì)需要考慮用戶的需求和認(rèn)知能力B.數(shù)據(jù)可視化設(shè)計(jì)可以使用多種圖表和圖形,如柱狀圖、折線圖、餅圖等C.數(shù)據(jù)可視化設(shè)計(jì)只需要注重美觀性,不需要考慮數(shù)據(jù)的準(zhǔn)確性和可讀性D.數(shù)據(jù)可視化設(shè)計(jì)需要不斷地進(jìn)行優(yōu)化和改進(jìn)28、在大數(shù)據(jù)環(huán)境中,數(shù)據(jù)治理是一項(xiàng)重要的工作。以下關(guān)于數(shù)據(jù)治理的目標(biāo),哪一項(xiàng)是不準(zhǔn)確的?()A.確保數(shù)據(jù)的準(zhǔn)確性和完整性B.提高數(shù)據(jù)的安全性和隱私保護(hù)水平C.降低數(shù)據(jù)存儲(chǔ)和處理的成本D.限制數(shù)據(jù)的訪問(wèn)和使用,以防止數(shù)據(jù)泄露29、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)壓縮技術(shù)可以節(jié)省存儲(chǔ)空間和提高傳輸效率。以下關(guān)于無(wú)損壓縮和有損壓縮的比較,哪一項(xiàng)是錯(cuò)誤的?()A.無(wú)損壓縮能夠完全還原原始數(shù)據(jù),有損壓縮不能B.有損壓縮的壓縮比通常比無(wú)損壓縮高C.圖像和音頻數(shù)據(jù)通常適合有損壓縮,文本數(shù)據(jù)適合無(wú)損壓縮D.無(wú)損壓縮的算法復(fù)雜度通常比有損壓縮低30、大數(shù)據(jù)中的情感分析用于判斷文本中的情感傾向。以下關(guān)于情感分析的應(yīng)用場(chǎng)景和方法,哪項(xiàng)描述不準(zhǔn)確?()A.情感分析可應(yīng)用于社交媒體監(jiān)測(cè)、客戶反饋分析和產(chǎn)品評(píng)價(jià)等領(lǐng)域B.基于詞典的方法通過(guò)查找預(yù)定義的情感詞來(lái)判斷情感傾向C.機(jī)器學(xué)習(xí)方法,如樸素貝葉斯和支持向量機(jī),也可用于情感分析D.情感分析只能處理簡(jiǎn)單的正面、負(fù)面和中性情感,無(wú)法識(shí)別更復(fù)雜的情感二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Python語(yǔ)言和TensorFlow框架,構(gòu)建一個(gè)深度學(xué)習(xí)模型,對(duì)大量的手寫(xiě)數(shù)字圖像進(jìn)行識(shí)別和分類。2、(本題5分)用Java實(shí)現(xiàn)一個(gè)程序,處理一個(gè)包含物流包裹跟蹤數(shù)據(jù)的大型數(shù)據(jù)集。找出運(yùn)輸時(shí)間最長(zhǎng)的10個(gè)包裹,并計(jì)算這些包裹的平均運(yùn)輸時(shí)間。3、(本題5分)給定一個(gè)包含社交媒體用戶發(fā)布內(nèi)容時(shí)間數(shù)據(jù)的數(shù)據(jù)集,使用時(shí)間序列分析方法預(yù)測(cè)用戶的活躍時(shí)間段。4、(本題5分)基于Storm,實(shí)現(xiàn)一個(gè)實(shí)時(shí)的交通流量數(shù)據(jù)處理程序,計(jì)算每個(gè)路口在不同時(shí)間段的車流量和擁堵指數(shù)。5、(本題5分)利用Spark框架,讀取一個(gè)包含游戲玩家行為數(shù)據(jù)的文件,分析玩家的游戲時(shí)長(zhǎng)、游戲等級(jí)與游戲消費(fèi)之間的關(guān)系。三、簡(jiǎn)答題(本大

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論