湖南城市學院《商業(yè)展示設計》2023-2024學年第二學期期末試卷_第1頁
湖南城市學院《商業(yè)展示設計》2023-2024學年第二學期期末試卷_第2頁
湖南城市學院《商業(yè)展示設計》2023-2024學年第二學期期末試卷_第3頁
湖南城市學院《商業(yè)展示設計》2023-2024學年第二學期期末試卷_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁湖南城市學院

《商業(yè)展示設計》2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的表情識別旨在識別圖像或視頻中人物的表情。假設要在一個情感分析系統(tǒng)中準確識別表情,以下關于表情識別方法的描述,正確的是:()A.基于幾何特征的表情識別方法對表情的細微變化不敏感,識別準確率低B.基于紋理特征的表情識別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學習中的卷積神經(jīng)網(wǎng)絡在表情識別中能夠?qū)W習到全局和局部的特征,但對大規(guī)模數(shù)據(jù)集依賴嚴重D.表情識別系統(tǒng)只適用于正面清晰的人臉表情,對于側(cè)臉和遮擋的表情無法識別2、計算機視覺中的視頻目標跟蹤中,假設目標在跟蹤過程中發(fā)生了嚴重的形變。以下關于處理目標形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應地處理目標形變,保持跟蹤的準確性B.特征點跟蹤方法對目標形變不敏感,在這種情況下仍然能夠可靠跟蹤C.深度學習中的孿生網(wǎng)絡在目標形變時容易丟失目標,無法繼續(xù)跟蹤D.結合多種特征和模型更新策略可以提高對目標形變的跟蹤魯棒性3、計算機視覺中的人臉識別技術應用廣泛。假設要在一個門禁系統(tǒng)中實現(xiàn)準確的人臉識別,以下關于人臉識別方法的描述,正確的是:()A.基于幾何特征的人臉識別方法對姿態(tài)和光照變化具有很強的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫,并且識別速度快C.深度學習中的卷積神經(jīng)網(wǎng)絡在人臉識別中能夠?qū)W習到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識別系統(tǒng)一旦訓練完成,就不需要更新和優(yōu)化,能夠一直保持高準確率4、在計算機視覺的圖像風格遷移任務中,假設要將一張照片轉(zhuǎn)換為具有特定藝術風格的圖像,以下哪種技術可能對生成逼真的風格效果起到關鍵作用?()A.對抗生成網(wǎng)絡(GAN)B.自編碼器(Autoencoder)C.變分自編碼器(VAE)D.玻爾茲曼機(BoltzmannMachine)5、假設要開發(fā)一個能夠?qū)ξ奈镞M行數(shù)字化保護和修復的計算機視覺系統(tǒng),需要對文物的破損部分進行準確識別和重建。以下哪種技術在文物修復方面可能具有應用潛力?()A.圖像修復算法B.三維重建技術C.虛擬增強現(xiàn)實技術D.以上都是6、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機制D.以上都是7、計算機視覺中的特征提取是非常關鍵的一步。以下關于特征提取方法的描述,不準確的是()A.傳統(tǒng)的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場景下仍然有效B.深度學習中的自動特征提取能夠?qū)W習到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類、目標檢測等任務的性能D.特征提取只關注圖像的局部信息,而忽略了全局信息8、計算機視覺中,以下哪種技術常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是9、在計算機視覺的圖像增強任務中,假設要提高一張低光照圖像的質(zhì)量。以下關于圖像增強方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級,但可能會導致細節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時也會模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對于低光照圖像效果不佳D.所有的圖像增強方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量10、計算機視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學習方法在行人重識別任務中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領域有重要的應用D.行人重識別技術已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達到100%的準確率11、計算機視覺在安防監(jiān)控領域有著廣泛的應用。假設一個商場需要通過監(jiān)控攝像頭進行人員異常行為檢測。以下關于安防監(jiān)控中的計算機視覺的描述,哪一項是不正確的?()A.可以實時監(jiān)測人群的流動情況,發(fā)現(xiàn)擁堵和異常聚集B.能夠識別人員的打斗、摔倒等異常行為,并及時發(fā)出警報C.計算機視覺系統(tǒng)能夠完全取代人工監(jiān)控,不需要人類保安的參與D.可以與其他安防設備(如門禁系統(tǒng))聯(lián)動,提高安防水平12、在計算機視覺的目標識別任務中,假設目標物體被部分遮擋,以下哪種模型架構可能更有助于恢復被遮擋部分的信息?()A.多層感知機(MLP)B.卷積神經(jīng)網(wǎng)絡(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(RNN)D.注意力機制(AttentionMechanism)13、在計算機視覺的表情識別任務中,判斷圖像或視頻中人物的表情。假設要開發(fā)一個用于在線教育的表情識別系統(tǒng),以下關于表情識別方法的描述,哪一項是不正確的?()A.可以通過分析面部肌肉的運動和特征點的變化來識別表情B.深度學習模型能夠?qū)W習不同表情的模式和特征,實現(xiàn)準確的表情分類C.表情識別系統(tǒng)需要考慮光照、頭部姿態(tài)和遮擋等因素的影響D.表情識別可以準確地識別出所有細微和復雜的表情,不受個體差異和文化背景的影響14、假設要開發(fā)一個能夠?qū)χ讣y進行識別和認證的計算機視覺系統(tǒng),以下哪種特征提取和匹配方法可能在指紋識別中具有較高的準確性?()A.細節(jié)點提取B.方向場提取C.紋理特征提取D.以上都是15、計算機視覺在體育賽事分析中的應用可以提供更深入的比賽洞察。假設要分析一場足球比賽中球員的跑位和傳球模式,以下關于體育賽事計算機視覺應用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰(zhàn)術和策略B.球員的速度和加速度等動態(tài)信息對比賽分析的價值不大C.結合深度學習和軌跡分析技術可以更有效地挖掘比賽中的關鍵模式和趨勢D.比賽場地的光照和攝像機視角對計算機視覺分析的結果沒有影響16、計算機視覺在農(nóng)業(yè)中的應用可以幫助監(jiān)測農(nóng)作物的生長狀況。假設要通過圖像分析判斷農(nóng)作物的病蟲害程度,以下關于農(nóng)業(yè)計算機視覺應用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準確判斷病蟲害的程度B.不同農(nóng)作物品種和生長階段對病蟲害判斷的影響不大C.結合圖像的紋理、形狀和顏色等多特征,可以更準確地評估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復雜性對計算機視覺的應用沒有挑戰(zhàn)17、在計算機視覺的姿態(tài)估計任務中,需要確定物體在三維空間中的方向和位置。假設要估計一個機器人手臂的姿態(tài),以實現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計方法在處理這種機械結構時準確性更高?()A.基于模型的姿態(tài)估計B.基于深度學習的姿態(tài)估計C.基于視覺慣性里程計的姿態(tài)估計D.基于幾何約束的姿態(tài)估計18、計算機視覺在醫(yī)學圖像分析中有著重要作用。假設要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關于模型訓練中數(shù)據(jù)標注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標注B.眼底圖像的質(zhì)量參差不齊,影響標注準確性C.標注人員的醫(yī)學知識不足,導致標注錯誤D.數(shù)據(jù)量過大,標注工作耗時費力19、計算機視覺中的圖像分割任務旨在將圖像分割成不同的區(qū)域。假設要對一張風景圖片進行分割,區(qū)分天空、陸地和水面。以下關于圖像分割方法的描述,哪一項是錯誤的?()A.基于閾值的分割方法簡單快速,但對于復雜圖像效果不佳B.區(qū)域生長法從種子點開始,逐步合并相似的區(qū)域C.深度學習中的全卷積網(wǎng)絡(FCN)在圖像分割中表現(xiàn)出色,能夠生成精確的分割結果D.圖像分割的結果總是清晰明確,不存在模糊或錯誤的邊界20、在計算機視覺的圖像分類任務中,假設數(shù)據(jù)集存在類別不平衡問題,某些類別的樣本數(shù)量遠遠少于其他類別。以下哪種方法可以緩解這種不平衡對分類模型的影響?()A.對少數(shù)類進行過采樣或?qū)Χ鄶?shù)類進行欠采樣B.只使用多數(shù)類的樣本進行訓練C.不考慮類別不平衡,直接訓練模型D.隨機選擇樣本進行訓練21、計算機視覺中的顯著性檢測旨在找出圖像中引人注目的區(qū)域。假設要在一張復雜的自然風景圖像中檢測顯著性區(qū)域,以下關于顯著性檢測方法的描述,哪一項是不正確的?()A.基于對比度的方法通過計算圖像區(qū)域與周圍區(qū)域的差異來確定顯著性B.基于頻域分析的方法可以從圖像的頻譜中提取顯著性信息C.深度學習方法能夠?qū)W習圖像的全局和局部特征,實現(xiàn)更準確的顯著性檢測D.顯著性檢測的結果總是與人類的視覺注意力機制完全一致,沒有偏差22、在計算機視覺的目標跟蹤任務中,跟蹤一個移動的物體具有挑戰(zhàn)性。假設要在一段視頻中跟蹤一個快速移動的車輛,以下關于目標跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的目標跟蹤算法在處理非線性運動時效果最佳B.深度學習中的相關濾波方法能夠快速適應目標的外觀變化和遮擋情況C.目標跟蹤算法不需要考慮目標的尺度變化和旋轉(zhuǎn)D.目標跟蹤的準確性只取決于初始幀中目標的定位精度23、在計算機視覺中,圖像分類是一項重要任務。假設我們要對大量的動物圖片進行分類,將其分為貓、狗、鳥等類別。以下關于圖像分類方法的描述,哪一項是不準確的?()A.基于深度學習的卷積神經(jīng)網(wǎng)絡(CNN)在圖像分類任務中表現(xiàn)出色,能夠自動學習圖像的特征B.傳統(tǒng)的機器學習方法如支持向量機(SVM)在處理大規(guī)模圖像數(shù)據(jù)時,性能通常不如深度學習方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對分類結果影響不大D.為了提高分類準確率,可以使用數(shù)據(jù)增強技術,如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來擴充數(shù)據(jù)集24、圖像分類是計算機視覺的基礎任務之一。假設要對一組動物圖片進行分類,區(qū)分貓、狗、兔子等。以下關于圖像分類方法的描述,哪一項是不準確的?()A.傳統(tǒng)的機器學習方法,如支持向量機(SVM),也可以用于圖像分類任務B.深度學習中的卷積神經(jīng)網(wǎng)絡(CNN)在圖像分類中取得了顯著的效果C.圖像分類只需要考慮圖像的內(nèi)容,不需要考慮圖像的拍攝角度和背景等因素D.可以通過數(shù)據(jù)增強技術,如旋轉(zhuǎn)、裁剪、翻轉(zhuǎn)等,增加訓練數(shù)據(jù)的多樣性25、假設要構建一個能夠?qū)嬜髌愤M行真?zhèn)舞b定的計算機視覺系統(tǒng),需要對作品的筆觸、線條和風格等特征進行分析。以下哪種技術在書畫鑒定中可能具有應用前景?()A.筆跡分析B.風格遷移C.圖像風格分析D.以上都是26、在計算機視覺的遙感圖像分析中,假設要從衛(wèi)星遙感圖像中提取土地利用信息,以下哪種技術可能對區(qū)分不同類型的土地覆蓋有幫助?()A.高光譜分析B.紋理分析C.形狀分析D.以上都有可能27、在計算機視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對模型的訓練和性能評估至關重要。以下關于數(shù)據(jù)集的描述,不準確的是()A.大規(guī)模、多樣化和標注準確的數(shù)據(jù)集有助于訓練出泛化能力強的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計算機視覺研究提供了重要的基準C.數(shù)據(jù)集的構建需要耗費大量的時間和人力,但可以通過數(shù)據(jù)增強技術來減少對原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構建完成,就不需要再進行更新和擴展,能夠一直滿足研究的需求28、在計算機視覺的場景理解任務中,需要對整個圖像場景進行分析和解釋。假設我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關系。以下哪種方法能夠提供更全面和深入的場景理解?()A.基于對象檢測和分類的方法B.基于語義分割和圖模型的方法C.基于深度學習的場景解析網(wǎng)絡D.基于特征匹配和聚類的方法29、計算機視覺在文物保護和數(shù)字化中的應用可以幫助記錄和分析文物信息。假設要對一件古老的雕塑進行三維數(shù)字化和表面紋理分析,以下關于文物保護計算機視覺應用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學習的方法更精確B.文物的復雜形狀和表面材質(zhì)對數(shù)字化和分析過程沒有挑戰(zhàn)C.結合多種成像技術和計算機視覺算法能夠更全面地獲取文物的信息D.文物保護中的計算機視覺應用不需要考慮對文物的非接觸性和無損性要求30、在計算機視覺的三維重建任務中,我們需要從多幅二維圖像中恢復物體的三維結構。假設我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰(zhàn)?()A.基于立體視覺的重建方法B.基于運動恢復結構(StructurefromMotion)的方法C.利用激光掃描數(shù)據(jù)進行重建D.基于模型擬合的重建方法二、應用題(本大題共5個小題,共25分)1、(本題5分)對地質(zhì)勘探圖像中的礦物質(zhì)分布進行分析和提取。2、(本題5分)運用計算機視覺技術,對珠寶首飾的品質(zhì)和真?zhèn)芜M行鑒定。3、(本題5分)通過圖像分類算法,對不同風格的珠寶設計圖像進行分類。4、(本題5分)通過計算機視覺,對不同類型的鞋子圖像進行分類。5、(本題5分)對電影中的特效場景進行視覺效果評估和優(yōu)化建議。三、簡答題(本大題共5個小題,共25分)1、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論