




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學(xué)年淮北市重點中學(xué)下學(xué)期高三數(shù)學(xué)試題強化訓(xùn)練考試試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.2.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.23.設(shè)M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.4.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.5.中,點在邊上,平分,若,,,,則()A. B. C. D.6.已知函數(shù),若,則的取值范圍是()A. B. C. D.7.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.8.函數(shù)的圖象向右平移個單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實數(shù)的值為()A. B. C.2 D.9.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件10.設(shè)且,則下列不等式成立的是()A. B. C. D.11.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.112.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點在球的球面上,,是邊長為2的正三角形,,則球的體積為__________.14.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.15.函數(shù)的圖象在處的切線與直線互相垂直,則_____.16.已知一個圓錐的底面積和側(cè)面積分別為和,則該圓錐的體積為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由.18.(12分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.19.(12分)記數(shù)列的前項和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項公式;(2)記數(shù)列的前項和為,求.20.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.21.(12分)已知點為圓:上的動點,為坐標原點,過作直線的垂線(當、重合時,直線約定為軸),垂足為,以為極點,軸的正半軸為極軸建立極坐標系.(1)求點的軌跡的極坐標方程;(2)直線的極坐標方程為,連接并延長交于,求的最大值.22.(10分)已知函數(shù)(),且只有一個零點.(1)求實數(shù)a的值;(2)若,且,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.2.D【解析】
由拋物線方程可得焦點坐標及準線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標,即為中點到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點到軸的距離為.故選:D.本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點橫坐標的和.3.B【解析】
設(shè),通過,再利用向量的加減運算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.4.A【解析】
首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.本題主要考查了空間幾何題中線面夾角的計算,屬于基礎(chǔ)題.5.B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.本題主要考查平面向量的線性運算,屬于基礎(chǔ)題.6.B【解析】
對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.7.A【解析】
結(jié)合復(fù)數(shù)的除法運算和模長公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.本題考查復(fù)數(shù)的除法、模長、平方運算,屬于基礎(chǔ)題8.C【解析】由函數(shù)的圖象向右平移個單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時,取得最大值,即,,,當時,解得,故選C.點睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時,取得最大值,求解可得實數(shù)的值.9.B【解析】
試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題10.A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.11.B【解析】
由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.本題考查二項式定理的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.12.B【解析】
求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意可得三棱錐的三條側(cè)棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【詳解】解:因為,為正三角形,所以,因為,所以三棱錐的三條側(cè)棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因為正方體的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:此題考查球的體積,幾何體的外接球,考查空間想象能力,計算能力,屬于中檔題.14.【解析】
由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角.15.1.【解析】
求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結(jié)果:本題主要考查直線垂直的應(yīng)用以及導(dǎo)數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.16.【解析】
依據(jù)圓錐的底面積和側(cè)面積公式,求出底面半徑和母線長,再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!驹斀狻吭O(shè)圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為。本題主要考查圓錐的底面積、側(cè)面積和體積公式的應(yīng)用。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】試題分析:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系.點評:中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達定理.存在性問題,往往從假設(shè)存在出發(fā),運用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達定理,應(yīng)用平面向量知識證明了圓的存在性.18.(1)1(2)【解析】
(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調(diào)遞增,又,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;所以,當且僅當時等號成立.故方程①有且僅有唯一解,實數(shù)的值為1.(2)解法一:令(),則,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當時,,單調(diào)遞增,當時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當時,.又由上式得,當時,,,.因此不等式(*)均成立.令(),則,(i)若時,當時,,單調(diào)遞增;當時,,單調(diào)遞減;故.(ii)若時,,在單調(diào)遞增,所以.因此,①當時,此時,,,則需由(*)知,,(當且僅當時等號成立),所以.②當時,此時,,則當時,(由(*)知);當時,(由(*)知).故對于任意,.綜上述:.本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于恒成立問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.19.(1)證明見解析,;(2)【解析】
(1)由成等差數(shù)列,可得到,再結(jié)合公式,消去,得到,再給等式兩邊同時加1,整理可證明結(jié)果;(2)將(1)得到的代入中化簡后再裂項,然后求其前項和.【詳解】(1)由成等差數(shù)列,則,即,①當時,,又,②由①②可得:,即,時,.所以是以3為首項,3為公比的等比數(shù)列,,所以.(2),所以.此題考查了數(shù)列遞推式,等比數(shù)列的證明,裂列相消求和,考查了學(xué)生分析問題和解決問題的能力,屬于中檔題.20.(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結(jié)果;(2)在中,由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設(shè),其中.在中,,,,,所以,,所以的幾何意義為兩點連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.本題考查正弦定理和余弦定理的實際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計算能力.21.(1);(2)【解析】
(1)設(shè)的極坐標為,在中,有,即可得結(jié)果;(2)設(shè)射線:,,圓的極坐標方程為,聯(lián)立兩個方程,可求出,聯(lián)立可得,則計算可得,利用三角函數(shù)的性質(zhì)可得最值.【詳解】(1)設(shè)的極坐標為,在中,有,點的軌跡的極坐標方程為;(2)設(shè)射線:,,圓的極坐標方程為,由得:,由得:,,,當,即時,,的最大值為.本題考查極坐標方程的應(yīng)用,考查三角函數(shù)性質(zhì)的應(yīng)用,是中檔題.22.(1)(2)證明見解析【解析】
(1)求導(dǎo)可得在上,在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CIE 173-2023紅外光全反射式雨量光照傳感器
- T/CIE 135-2022信息系統(tǒng)交付能力成熟度模型
- T/CGCC 31-2019區(qū)塊鏈應(yīng)用指南商品及其流通信息可追溯性要求
- T/CECS 10096-2020裝配式預(yù)涂無機飾面板
- T/CCPITCSC 067-2021外賣運營師職業(yè)能力要求
- T/CCBD 26-2023品牌評價區(qū)域農(nóng)業(yè)公用品牌
- T/CAQI 50-2018家用和類似用途節(jié)水型反滲透濾芯
- T/CAQI 202-2021空氣離子測量儀
- T/CAQI 120-2020家用和類似用途飲用水處理裝置用反滲透膜組件安全使用壽命評價規(guī)范
- T/CAPA 3-2021毛發(fā)移植規(guī)范
- 江蘇省南通市海安市2024-2025學(xué)年高二下學(xué)期4月期中生物試題(原卷版+解析版)
- 中國鐵路西安局招聘高校畢業(yè)生考試真題2024
- (五調(diào))武漢市2025屆高三年級五月模擬訓(xùn)練生物試卷(含答案)
- 2025年開展安全生產(chǎn)月活動方案 合計3份
- 2023北京初三一模數(shù)學(xué)試題匯編:代數(shù)綜合(第26題)
- 畢業(yè)設(shè)計產(chǎn)品包裝設(shè)計
- 安徽卷-2025屆高考化學(xué)全真模擬卷
- 河北省石家莊市2025屆普通高中高三教學(xué)質(zhì)量檢測(三)英語試卷及答案
- 2025屆百師聯(lián)盟高三下學(xué)期二輪復(fù)習(xí)聯(lián)考(三)政治試題(含答案)
- 安全生產(chǎn)月活動查找身邊安全隱患人人講安全個個會應(yīng)急課件
- 山東財經(jīng)綜招試題及答案
評論
0/150
提交評論