2025屆福建省龍巖第二中學(xué)高考模擬金典卷數(shù)學(xué)試題(五)試題_第1頁(yè)
2025屆福建省龍巖第二中學(xué)高考模擬金典卷數(shù)學(xué)試題(五)試題_第2頁(yè)
2025屆福建省龍巖第二中學(xué)高考模擬金典卷數(shù)學(xué)試題(五)試題_第3頁(yè)
2025屆福建省龍巖第二中學(xué)高考模擬金典卷數(shù)學(xué)試題(五)試題_第4頁(yè)
2025屆福建省龍巖第二中學(xué)高考模擬金典卷數(shù)學(xué)試題(五)試題_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆福建省龍巖第二中學(xué)高考模擬金典卷數(shù)學(xué)試題(五)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.2019年10月17日是我國(guó)第6個(gè)“扶貧日”,某醫(yī)院開(kāi)展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動(dòng),現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種2.如圖所示,已知雙曲線(xiàn)的右焦點(diǎn)為,雙曲線(xiàn)的右支上一點(diǎn),它關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,滿(mǎn)足,且,則雙曲線(xiàn)的離心率是().A. B. C. D.3.的展開(kāi)式中各項(xiàng)系數(shù)的和為2,則該展開(kāi)式中常數(shù)項(xiàng)為A.-40 B.-20 C.20 D.404.函數(shù)的一個(gè)零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)a的取值范圍是()A. B. C. D.5.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.6.若集合,則=()A. B. C. D.7.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}8.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.9.已知曲線(xiàn)的一條對(duì)稱(chēng)軸方程為,曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)的一個(gè)對(duì)稱(chēng)中心的坐標(biāo)為,則的最小值是()A. B. C. D.10.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線(xiàn)與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是()A. B. C. D.11.我國(guó)古代數(shù)學(xué)名著《數(shù)書(shū)九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺(tái)體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸12.《易·系辭上》有“河出圖,洛出書(shū)”之說(shuō),河圖、洛書(shū)是中華文化,陰陽(yáng)術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽(yáng)數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線(xiàn)過(guò)圓的圓心,則的最小值是_____.14.設(shè)是公差不為0的等差數(shù)列的前n項(xiàng)和,且,則______.15.定義在上的奇函數(shù)滿(mǎn)足,并且當(dāng)時(shí),則___16.展開(kāi)式中的系數(shù)的和大于8而小于32,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在△ABC中,分別為三個(gè)內(nèi)角A、B、C的對(duì)邊,且(1)求角A;(2)若且求△ABC的面積.18.(12分)某芯片公司為制定下一年的研發(fā)投入計(jì)劃,需了解年研發(fā)資金投入量x(單位:億元)對(duì)年銷(xiāo)售額y(單位:億元)的影響.該公司對(duì)歷史數(shù)據(jù)進(jìn)行對(duì)比分析,建立了兩個(gè)函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷(xiāo)售額yi的數(shù)據(jù),i=1,2,?,12,并對(duì)這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷(xiāo)售額y需達(dá)到90億元,預(yù)測(cè)下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e19.(12分)已知凸邊形的面積為1,邊長(zhǎng),,其內(nèi)部一點(diǎn)到邊的距離分別為.求證:.20.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.21.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線(xiàn)交于.(1)求證:平面平面;(2)求二面角的余弦值.22.(10分)已知函數(shù).(1)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時(shí),求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

分兩類(lèi):一類(lèi)是醫(yī)院A只分配1人,另一類(lèi)是醫(yī)院A分配2人,分別計(jì)算出兩類(lèi)的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類(lèi):第一類(lèi):若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時(shí),共有種不同分配方案;第二類(lèi):若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時(shí),共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時(shí),共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時(shí),共有種不同分配方案;共有20種不同分配方案.故選:B【點(diǎn)睛】本題考查排列與組合的綜合應(yīng)用,在做此類(lèi)題時(shí),要做到分類(lèi)不重不漏,考查學(xué)生分類(lèi)討論的思想,是一道中檔題.2.C【解析】

易得,,又,平方計(jì)算即可得到答案.【詳解】設(shè)雙曲線(xiàn)C的左焦點(diǎn)為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點(diǎn)睛】本題考查求雙曲線(xiàn)離心率的問(wèn)題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.3.D【解析】令x=1得a=1.故原式=.的通項(xiàng),由5-2r=1得r=2,對(duì)應(yīng)的常數(shù)項(xiàng)=80,由5-2r=-1得r=3,對(duì)應(yīng)的常數(shù)項(xiàng)=-40,故所求的常數(shù)項(xiàng)為40,選D解析2.用組合提取法,把原式看做6個(gè)因式相乘,若第1個(gè)括號(hào)提出x,從余下的5個(gè)括號(hào)中選2個(gè)提出x,選3個(gè)提出;若第1個(gè)括號(hào)提出,從余下的括號(hào)中選2個(gè)提出,選3個(gè)提出x.故常數(shù)項(xiàng)==-40+80=404.C【解析】

顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個(gè)零點(diǎn)在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因?yàn)榈囊粋€(gè)零點(diǎn)在區(qū)間內(nèi),所以,即,解得,故選:C【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,屬于基礎(chǔ)題.5.C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.6.C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.7.C【解析】

解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛?,所?故選:C【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.8.B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時(shí),,無(wú)意義,故排除A;又,則,故排除D;對(duì)于C,當(dāng)時(shí),,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類(lèi)問(wèn)題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.9.C【解析】

在對(duì)稱(chēng)軸處取得最值有,結(jié)合,可得,易得曲線(xiàn)的解析式為,結(jié)合其對(duì)稱(chēng)中心為可得即可得到的最小值.【詳解】∵直線(xiàn)是曲線(xiàn)的一條對(duì)稱(chēng)軸.,又..∴平移后曲線(xiàn)為.曲線(xiàn)的一個(gè)對(duì)稱(chēng)中心為..,注意到故的最小值為.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)性質(zhì)的應(yīng)用,涉及到函數(shù)的平移、函數(shù)的對(duì)稱(chēng)性,考查學(xué)生數(shù)形結(jié)合、數(shù)學(xué)運(yùn)算的能力,是一道中檔題.10.A【解析】

聯(lián)立直線(xiàn)方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因?yàn)?所以,所以.所以,所以,故選:A.【點(diǎn)睛】本題考查了直線(xiàn)與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.11.B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點(diǎn):1.實(shí)際應(yīng)用問(wèn)題;2.圓臺(tái)的體積.12.C【解析】

先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿(mǎn)足條件的情況,由此可求解出對(duì)應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類(lèi)問(wèn)題可通過(guò)古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

直線(xiàn)mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當(dāng)且僅當(dāng)m=n時(shí)取等號(hào).∴則的最小值是4.故答案為:4.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.14.18【解析】

將已知已知轉(zhuǎn)化為的形式,化簡(jiǎn)后求得,利用等差數(shù)列前公式化簡(jiǎn),由此求得表達(dá)式的值.【詳解】因?yàn)?,所?故填:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,考查等差數(shù)列的性質(zhì)以及求和,考查運(yùn)算求解能力,屬于基礎(chǔ)題.15.【解析】

根據(jù)所給表達(dá)式,結(jié)合奇函數(shù)性質(zhì),即可確定函數(shù)對(duì)稱(chēng)軸及周期性,進(jìn)而由的解析式求得的值.【詳解】滿(mǎn)足,由函數(shù)對(duì)稱(chēng)性可知關(guān)于對(duì)稱(chēng),且令,代入可得,由奇函數(shù)性質(zhì)可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當(dāng)時(shí),所以,所以,故答案為:.【點(diǎn)睛】本題考查了函數(shù)奇偶性與對(duì)稱(chēng)性的綜合應(yīng)用,周期函數(shù)的判斷及應(yīng)用,屬于中檔題.16.4【解析】

由題意可得項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,,故答案為:4.【點(diǎn)睛】該題考查的是有關(guān)二項(xiàng)式定理的問(wèn)題,涉及到的知識(shí)點(diǎn)有展開(kāi)式中項(xiàng)的系數(shù)和,屬于基礎(chǔ)題目.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】

(1)整理得:,再由余弦定理可得,問(wèn)題得解.(2)由正弦定理得:,,,再代入即可得解.【詳解】(1)由題意,得,∴;(2)由正弦定理,得,,∴.【點(diǎn)睛】本題主要考查了正、余弦定理及三角形面積公式,考查了轉(zhuǎn)化思想及化簡(jiǎn)能力,屬于基礎(chǔ)題.18.(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解析】

(1)由相關(guān)系數(shù)求出兩個(gè)系數(shù),比較大小可得;(2)(i)先建立U額R0關(guān)于x的線(xiàn)性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【詳解】本小題主要考查回歸分析等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力、抽象概括能力及應(yīng)用意識(shí),考查統(tǒng)計(jì)與概率思想、分類(lèi)與整合思想,考查數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U額R0關(guān)于x所以lny=0.02x+3.84(ii)下一年銷(xiāo)售額y需達(dá)到90億元,即y=90,代入y=e0.02x+3.84又e4.4998≈90,所以所以x≈4.4998-3.84所以預(yù)測(cè)下一年的研發(fā)資金投入量約是32.99億元【點(diǎn)睛】本小題主要考查拋物線(xiàn)的定義、拋物線(xiàn)的標(biāo)準(zhǔn)方程、直線(xiàn)與拋物線(xiàn)的位置關(guān)系、導(dǎo)數(shù)幾何意義等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等,考查數(shù)學(xué)運(yùn)算、直觀想象、邏輯推理等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性19.證明見(jiàn)解析【解析】

由已知,易得,所以利用柯西不等式和基本不等式即可證明.【詳解】因?yàn)橥惯呅蔚拿娣e為1,所以,所以(由柯西不等式得)(由均值不等式得)【點(diǎn)睛】本題考查利用柯西不等式、基本不等式證明不等式的問(wèn)題,考查學(xué)生對(duì)不等式靈活運(yùn)用的能力,是一道容易題.20.(1);(2)【解析】

(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),由三角形面積公式可得,所以四邊形面積的最大值為.【點(diǎn)睛】本題考查了正弦和角公式化簡(jiǎn)三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.21.(1)見(jiàn)解析;(2)【解析】

(1)過(guò)點(diǎn)作交于,連接,設(shè),連接,由角平分線(xiàn)的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線(xiàn)面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識(shí)和線(xiàn)面的關(guān)系可證得平面,建立

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論