湖南省長沙瀏陽市2024屆高三下期期中考試數學試題_第1頁
湖南省長沙瀏陽市2024屆高三下期期中考試數學試題_第2頁
湖南省長沙瀏陽市2024屆高三下期期中考試數學試題_第3頁
湖南省長沙瀏陽市2024屆高三下期期中考試數學試題_第4頁
湖南省長沙瀏陽市2024屆高三下期期中考試數學試題_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省長沙瀏陽市2023屆高三下期期中考試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B. C. D.2.已知數列中,,若對于任意的,不等式恒成立,則實數的取值范圍為()A. B.C. D.3.設集合則()A. B. C. D.4.已知集合,則=()A. B. C. D.5.將函數的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.6.若復數()是純虛數,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.的展開式中,項的系數為()A.-23 B.17 C.20 D.638.函數的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位9.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.10.偶函數關于點對稱,當時,,求()A. B. C. D.11.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.312.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠地點離地面的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的最小正周期為________;若函數在區(qū)間上單調遞增,則的最大值為________.14.若的展開式中只有第六項的二項式系數最大,則展開式中各項的系數和是________.15.在長方體中,,則異面直線與所成角的余弦值為()A. B. C. D.16.已知,復數且(為虛數單位),則__________,_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)已知關于的不等式有實數解,求的取值范圍;(2)求不等式的解集.18.(12分)已知橢圓()的半焦距為,原點到經過兩點,的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經過,兩點,求橢圓的方程.19.(12分)已知動圓經過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.20.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點,為⊙上一點,,交于點.求證:~.21.(12分)在直角坐標系中,直線的參數方程為.(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程及的直角坐標方程;(2)求曲線上的點到距離的取值范圍.22.(10分)已知函數.(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數在上的零點個數.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

計算,再計算交集得到答案【詳解】,表示偶數,故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.2.B【解析】

先根據題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉化為恒成立,再利用函數性質解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數列的通項的求法以及函數的性質的運用,屬于綜合性較強的題目,解題的關鍵是能夠由遞推數列求出通項公式和后面的轉化函數,屬于難題.3.C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.4.D【解析】

先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.5.B【解析】

首先根據函數的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關三角函數的周期與函數圖象平移之間的關系,屬于簡單題目.6.B【解析】

化簡復數,由它是純虛數,求得,從而確定對應的點的坐標.【詳解】是純虛數,則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數的除法運算,考查復數的概念與幾何意義.本題屬于基礎題.7.B【解析】

根據二項式展開式的通項公式,結合乘法分配律,求得的系數.【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數為17.故選:B【點睛】本小題考查二項式定理及展開式系數的求解方法等基礎知識,考查理解能力,計算能力,分類討論和應用意識.8.C【解析】

根據正弦型函數的圖象得到,結合圖像變換知識得到答案.【詳解】由圖象知:,∴.又時函數值最大,所以.又,∴,從而,,只需將的圖象向左平移個單位即可得到的圖象,故選C.【點睛】已知函數的圖象求解析式(1).(2)由函數的周期求(3)利用“五點法”中相對應的特殊點求,一般用最高點或最低點求.9.C【解析】

易得,,又,平方計算即可得到答案.【詳解】設雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關鍵是建立的方程或不等關系,是一道中檔題.10.D【解析】

推導出函數是以為周期的周期函數,由此可得出,代值計算即可.【詳解】由于偶函數的圖象關于點對稱,則,,,則,所以,函數是以為周期的周期函數,由于當時,,則.故選:D.【點睛】本題考查利用函數的對稱性和奇偶性求函數值,推導出函數的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.11.D【解析】

畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標函數,即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數轉化為的形式,在可行域內通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數即可求出最值.注意畫可行域時,邊界線的虛實問題.12.A【解析】

由題意畫出圖形,結合橢圓的定義,結合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛(wèi)星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

直接計算得到答案,根據題意得到,,解得答案.【詳解】,故,當時,,故,解得.故答案為:;.【點睛】本題考查了三角函數的周期和單調性,意在考查學生對于三角函數知識的綜合應用.14.【解析】

由題意得出展開式中共有11項,;再令求得展開式中各項的系數和.【詳解】由的展開式中只有第六項的二項式系數最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數和的求法,屬于基礎題.15.C【解析】

根據確定是異面直線與所成的角,利用余弦定理計算得到答案.【詳解】由題意可得.因為,所以是異面直線與所成的角,記為,故.故選:.【點睛】本題考查了異面直線夾角,意在考查學生的空間想象能力和計算能力.16.【解析】∵復數且∴∴∴∴,故答案為,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)依據能成立問題知,,然后利用絕對值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點分段法解含有兩個絕對值的不等式即可。【詳解】因為不等式有實數解,所以因為,所以故。①當時,,所以,故②當時,,所以,故③當時,,所以,故綜上,原不等式的解集為?!军c睛】本題主要考查不等式有解問題的解法以及含有兩個絕對值的不等式問題的解法,意在考查零點分段法、絕對值三角不等式和轉化思想、分類討論思想的應用。18.(Ⅰ);(Ⅱ).【解析】試題分析:(1)依題意,由點到直線的距離公式可得,又有,聯立可求離心率;(2)由(1)設橢圓方程,再設直線方程,與橢圓方程聯立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過點的直線方程為,則原點到直線的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線段的中點,且.易知,不與軸垂直.設其直線方程為,代入(1)得.設,則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.19.見解析【解析】

(1)設,則點到軸的距離為,因為圓被軸截得的弦長為,所以,又,所以,化簡可得,所以曲線的標準方程為.(2)設,,因為直線的斜率,所以可設直線的方程為,由及,消去可得,所以,,所以.設線段的中點為,點的縱坐標為,則,,所以直線的斜率為,所以,所以,所以.易得圓心到直線的距離,由圓經過點,可得,所以,整理可得,解得或,所以或,又,所以.20.證明見解析【解析】

根據相似三角形的判定定理,已知兩個三角形有公共角,題中未給出線段比例關系,故可根據判定定理一需找到另外一組相等角,結合平面幾何的知識證得即可.【詳解】證明:∵,所以,又因為,所以.在與中,,,故~.【點睛】本題考查平面幾何中同弧所對的圓心角與圓周角的關系、相似三角形的判定定理;考查邏輯推理能力和數形結合思想;分析圖形,找出角與角之間的關系是證明本題的關鍵;屬于基礎題.21.(1),.(2)【解析】

(1)根據直線的參數方程為(為參數),消去參數,即可求得的的普通方程,曲線的極坐標方程為,利用極坐標化直角坐標的公式:,即可求得答案;(2)的標準方程為,圓心為,半徑為,根據點到直線距離公式,即可求得答案.【詳解】(1)直線的參數方程為(為參數),消去參數的普通方程為.曲線的極坐標方程為,利用極坐標化直角坐標的公式:的直角坐標方程為.(2)的標準方程為,圓心為,半徑為圓心到的距離為,點到的距離的取值范圍是.【點睛】本題解題關鍵是掌握極坐標化直角坐標的公式和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.22.(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)函數在有3個零點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論