




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
REACHINGZEROWITHRENEWABLES
ALUMINIUM
13
INDUSTRY
Al
PAGE
10
|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY
REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY|
PAGE
3
?IRENA2025
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN:978-92-9260-649-7
Citation:IRENA(2025),Reachingzerowithrenewables:Aluminiumindustry,InternationalRenewableEnergyAgency,AbuDhabi.
Availablefordownload:
/publications
Forfurtherinformationortoprovidefeedback,pleasecontactIRENAat
publications@.
AboutIRENA
TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.
Acknowledgements
ThereportwasauthoredbyKaranKochharandLuisJaneiroundertheguidanceofFranciscoBoshellandRolandRoesch(Director,IRENAInnovationandTechnologyCentre).PernelleNunezandLinlinWu(InternationalAluminiumInstitute)providedsubstantialinputstothereport’sconcept,developmentandextensivefeedbackontheanalysis.
DrMartinIffert(EnergyPool,MartinIffertConsulting)providedsubstantialbackgroundinformationandfeedback.ZafarSamadov,AbdullahFahad,YongChen,AdrianGonzalezandSeanCollins(IRENA),andMarlenBertram(IAI)andMarghanitaJohnson(AustraliaAluminiumCouncil),providedvaluablereviews.IRENAisgratefultoIAI’sEnergyandEnvironmentCommitteeforitsfeeedbackontheinitialfindingsofthereport.
Thereportwascopy-editedbyJustinFrench-BrooksandtechnicalreviewwasprovidedbyPaulKomor.EditorialsupportwasprovidedbyFrancisFieldandStephanieClarke.DesignwasprovidedbyStrategicAgenda.
Disclaimer
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
Contents
Executivesummary 7
Introduction 11
Aluminiumproductionprocesses 13
Thealuminiumsectortoday 14
Environmentalrelevanceofthealuminiumsector 16
Energycostsensitivityinthealuminiumindustry 19
Transformationpillars:Towardsnetzerointhealuminiumsector 20
PillarI:Renewableenergysupplyforsmeltingandaluminarefining 22
PillarII:Maximisethepotentialofmaterialefficiencyandrecycledaluminium 42
PillarIII:Additionaldecarbonisationlevers 51
Acceleratingthetransitiontowardsnetzerointhealuminiumindustry 53
Recentprogressinthetransitionofthealuminiumindustry 54
Keyconsiderationsfordecisionmakers 55
Keyactionstoacceleratethetransitioninthealuminiumindustry 57
References 59
Figures
FigureS1
Keyareasofactiontodecarbonisethealuminiumsector
9
Figure1
Aluminiumvaluechain
13
Figure2
Historicalgrowthinprimaryaluminiumproduction
14
Figure3
Regionalmixofbauxite,aluminaandaluminiumproduction
15
Figure4
Regionalmixofaluminiumconsumption
15
Figure5
Breakdownofaluminiumdemandbyuse
16
Figure6
GHGemissionsfromprimaryaluminiumvaluechain
17
Figure7
Evolutionoffuelmixinaluminarefining(top)andpowermixinaluminiumsmelting(bottom)
18
Figure8
Shareofenergycostsasafractionoftotalproductioncostsinaluminarefiningandaluminium
smelting
19
Figure9
OverviewoffactorsoftheGHGimpactsofaluminiumsector,andpillarsfordecarbonisation
21
Figure10
Electricity-relatedemissionsinprimaryaluminiumproduction
2
2
Figure11
GlobalLCOEfromnewlycommissionedutility-scalerenewableenergytechnologies,2010-2023
24
Figure12
LCOEofutility-scalesolarPV(top)andonshorewind(below)comparedwithfossilfuel
generationinregionswithaluminiumsmeltingcapacityrespectively
25
Figure13
Annualpowergenerationcapacityadditions
26
Figure14
Globalpowergenerationmixandinstalledcapacitybyenergysource:PlannedEnergy
Scenarioand1.5°CScenarioin2020,2030and2050
27
Figure15
Modelsforsourcingrenewableelectricityforaluminiumsmelting
29
Figure16
Powersystemflexibilityenablers
31
Figure17
Schematicofflowsofelectricitytoanaluminiumsmelteroperatingwithrenewable
energyandstorage
3
3
Figure18
AveragehourlyoutputofasolarPVandsmelterloadperMWofcapacityinstalled
33
Figure19
LoaddurationcurveforsolarPVplantwithoutabatteryvssmelterloadforlocation1
34
Figure20
LoaddurationcurveforsolarPVplantwithabatteryvssmelterloadforlocation1
35
Figure21
AveragehourlyoutputofsolarPVandonshorewindplantsvssmelterloadperMW
ofcapacityinstalled
3
6
Figure22
LoaddurationcurveforthesolarPV,windplantwithoutabatteryandthesmelterforlocation2
36
Figure23
LoaddurationcurveforthesolarPV,windplantwithabatteryandthesmelterforlocation2
37
Figure24Systemicinnovationapproaches 3
8
Figure25RefiningbauxitetoaluminausingtheBayerprocess 40
Figure26Resourceandeconomicefficiencyinaluminium 42
Figure27Shareofscrapinaluminiumproductionin2021 47
Figure28Potentialroleofrecyclinginfuturealuminiumproduction 48
Figure29Roleofrecyclingandmaterialefficiencymeasuresinaluminiumsectorin2050 50
Figure30Energyintensityofmetallurgicalaluminarefining(top)andprimaryaluminiumsmelting(bottom)52
Tables
Table1
SolarPVandwindPPAsplannedforaluminiumsmelting(non-exhaustive)
28
Table2
SystemicinnovationforflexiblesmeltingoperationandintegrationofVREintothegrid
39
Table3
Decarbonisationoptionsforaluminarefiningprocess
41
Table4
Materialefficiencyprinciplesindifferentendusesofaluminium
43
Table5
Energyandemissionsintensityofdifferentaluminiumproductionroutes
45
Table6
Estimatedpost-consumerscrapcollectionratesin2020
46
Table7
Summaryofactionstoacceleratethetransitioninthealuminiumsector
59
Abbreviations
Al
aluminium
kWh
kilowatthour
BAU
businessasusual
LCOE
levelisedcostofelectricity
COP28
28thmeetingoftheConferenceoftheParties
MBtu
millionBritishthermalunits
MPP
MissionPossiblePartnership
CO2
carbondioxide
Mt
milliontonnes
CO2eq
carbondioxideequivalent
MVR
mechanicalvapourrecompression
CST
concentratedsolarthermal
MW
megawatt
DR
demandresponse
MWp
megawattpeak
EJ
exajoule
OCGT
open-cyclegasturbine
FMC
FirstMover’sCoalition
PES
IRENAPlannedEnergyScenario
GHG
greenhousegas
PPA
powerpurchaseagreement
GJ
gigajoule
PV
photovoltaic
GO
guaranteeoforigin
RD&D
research,developmentanddemonstration
Gt
gigatonne
R&D
researchanddevelopment
GW
gigawatt
SO2
sulphurdioxide
GWh
gigawatthour
t
tonne
IAI
InternationalAluminiumInstitute
TWh
terawatthour
IEA
InternationalEnergyAgency
VRE
variablerenewableenergy
IRENA
InternationalRenewableEnergyAgency
Executivesummary
13
Al
PAGE
8
|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY
Aluminiumisahighlyversatilemetalduetoitslightweightnature,highstrength,recyclabilityandgoodconductivity,anditiscrucialinseveralindustries,includingpackaging,transport,electronics,constructionandrenewableenergy.Theuseofaluminiumhassignificantlyexpandedinthepastfewdecadesduetothedevelopmentofnewmarketsandapplicationsandeconomicgrowth,particularlyinemergingeconomies.Whilealuminiumprovidesmajorvaluetomodernsocieties,itisalsoasignificantcontributortoclimatechange.Aluminiumproductionaccountedforabout1.1gigatonnes(Gt)ofcarbondioxide(CO2)emissionsin2022,mainlyduetoaluminiumproduction’srelianceonfossilfuelsforenergysupply.
Aluminiumproductionisprojectedtoincreasebymorethanathirdby2050.Withoutmeasurestodecarbonisethesector,emissionsfromthealuminiumindustrywillcontinuetorise.Thisreportprovidesinsightsforindustryandpolicymakersontheroleofrenewableenergyandotherleverstoreduceemissionsfromthealuminiumsector.
Aluminiumsmelting–extractingaluminiummetalfromitsrefinedore-accountsforaboutthree-quartersofthetotalCO2emissionsfromproduction(pertonne,globalaverage).Smeltingreliesprimarilyonelectricityasenergyinput.Hence,emissionsfromsmeltingvaryconsiderablydependingontheelectricitymix;smeltersusingrenewableenergysourceslikehydropowerhaveloweremissionsthanthosedependentonfossilfuels.Thus,integratingincreasingamountsofrenewableenergysourcessuchaswindandsolarinsteadoffossilfuelsisakeysolutiontoreducethesector’scarbonfootprint.
Inthelastdecademodernrenewableenergytechnologies,suchassolarphotovoltaic(PV)andwind,havebecomethecheapestsourcesofnewpowergenerationinmostmarketsaroundtheworld.Furthermore,solarPVandwindhavepotentialforfurthercostreductionsthrougheconomiesofscaleandtechnologicaladvancements.Therefore,theyaresettobecomethebackboneofglobaldecarbonisedpowersupplyandwillplayakeyroleinthedecarbonisationofthealuminiumsector.Overtime,locationswiththehighestqualityandavailabilityofrenewableresourcescouldprovidethemostcompetitivelocationsforaluminiumproduction.
ByintegratingsolarPVandwindinsmelting,aluminiumproducerscanleadtheindustry’stransitioninlinewiththeParisAgreement.SeveralsmeltersalreadyplantointegratesolarPVandwindpowercapacitythroughlong-termpowerpurchaseagreements(PPAs).However,mostsmelterscontinuetofinditchallengingtosecureattractiverenewableenergyPPAsduetoacombinationoffactors.Theseincluderegulatoryandmarketbarrierspreventingrapiddeploymentofrenewables,aswellashighdemandforlow-carbonelectricity,whichcandriveuppricesbeyondthelevelaluminiumproducerscanpay,giventheindustry’stightmargins.Also,thevariabilityofsolarandwindisachallengeforsmelters,whichtraditionallyrequireaconstantpowersupply.
Thereisnosingle“one-size-fits-all”solutiontointegratinghighsharesofmodernrenewableenergyintoaluminiumsmelting.Theoptionsavailabletoasmelterdependontheavailabilityofrenewableenergysourcesinthesmelter’slocation,theavailabilityofpowersystemflexibilitysolutionsintheregion,andthedegreeofoperationalflexibilityofthesmelteritself.
TheothertwomajorsourcesofCO2emissionsarefromrefiningaluminaandcarbonanodes.ThesesourcescontributealmostafifthofthetotalCO2emissionsfromprimaryproductionand,inregionswherelow-carbonelectricityisalreadyutilisedforsmelting,areasignificantpartofemissions.Adeepdecarbonisationofthealuminiumsectorwouldinvolvewidescaleadoptionoflow-carbonrefiningprocessesandinertanodes.However,thecostsforlow-carbonrefiningprocesses,inmanycases,arestillhigh,andinertanodesarenotyetcommerciallyavailable.
FigureS1Keyareasofactiontodecarbonisethealuminiumsector
Leveltheplayingfieldforlow-carbonaluminium
Increaseshareofrenewablesinthepowersupplytothealuminiumsector
Increaseuptakeoflow-emissionsrefiningprocess
Commercialiseinertanodes
Improvematerialandenergyuseinproductionandmanufacturing
Despitethechallenges,thealuminiumsectoristakingstepstowardsreducingitsemissions.SeveralproducersalreadyaimtointegraterenewablesintosmeltingandhavebeeninvolvedinRD&Dinitiativestoreduceemissionsfromotherareasofaluminiumproduction.Therehasalsobeenprogressincatalysingdemandforlow-carbonaluminium.Differentactorsareinvolvedininitiativestotrackemissions,encouragetheflowoffinancetowardslow-carbonaluminium,andcollaboratewithotherplayersonindustrydecarbonisationinitiatives.
However,decarbonisingthealuminiumindustryinlinewiththegoalsoftheParisAgreementwillrequiremoreproactiveandcollaborativeeffortsinvolvinggovernments,producers,consumers,academiaandnon-stateactors.
Onanoverarchinglevel,asupportivepolicyenvironmentisessentialtoacceleratethealuminiumsector’sdecarbonisation.Thealuminiumindustry,projectdevelopersandinvestorswillrequireclear,stableandcrediblesignalsofdecarbonisationgoalsandadequateeconomicincentivestofacilitateinvestmentdecisionsonlow-carbontechnologies.Zoomingin,thisrequiresafocusonspecificstrategicareastodrivechangeeffectively.
Acriticalfirststepistocreatealevel-playingforlow-carbonaluminiumbyinternalisingthefullcostofthenegativeenvironmentalexternalitiesoffossilenergyand/orcreatingamarketforlow-carbonaluminium.Thelatterincludesgrowingdemandthroughpublicprocurementandprivate-sectorinitiativessuchasvoluntaryschemesandpartnershipswithproducers.Creatingandimplementingrobuststandards,certificationandlabellingschemescouldfurtherenablethemarket.
REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY|9
PAGE
10
|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY
Atthecoreofthesector’stransformationisincreasingtheshareofrenewableenergysupplytothealuminiumsector,particularlyforsmelting.Thisincludesrapiddevelopmentofthesupplyofrenewablestotriplerenewableenergycapacityby2030,inlinewiththegoalexpressedintheOutcomeoftheFirstGlobalStocktakeatCOP28,knownasthe‘UAEConsensus’.Governmentscanfacilitatethisgrowthbyreducingbarrierstodevelopingandintegratingrenewableenergyintopowersystems.Aluminiumproducerscanalsoexploreintegratingrenewablepowersupplyintotheiroperationsthroughdifferentmechanisms.
Whilesmeltingisthelargestsourceofemissions,itisimportanttopayattentiontotheothersourcestoachievedeepdecarbonisation.Forthis,promotinglow-emissionrefiningofbauxiteisimportant.Tothisend,governmentscouldprovideeconomicincentivesforadoptinglow-carbonrefiningtechnologiesordirectfundingorsupportforresearch.AluminiumproducerscouldalsoincreaseeffortsinRD&Dforlow-emissionrefiningtechnologiesincollaborationwithotheractors.Anotherimportantleverfordeepdecarbonisationisthecommercialisationofinertanodes,whichrequiresindustryandresearchinstitutionstoworktogethertoaddressremainingoperationalgapsandefficientlyrolloutthetechnology.
Somepotentialalsoremainstoimprovematerialandenergyuseintheindustry.Thiswillinvolveallstakeholdersinimplementingdifferentinitiatives,suchasinvestinginR&D,adoptingadvancedtechnologies,enforcingstandards,andpromotingbestpracticesforscrapcollectionandinnovativealloydevelopment.
Introduction
13
Al
Aluminiumoffersexceptionalversatility.Itsupportswide-rangingapplications,inpackaging,cars,andelectriccablesandequipment,amongothercrucialapplicationsvitaltohumanprogress.Aluminium’sversatilityisduetoitshighstrength,lightweight,recyclability,andexcellentelectricalandthermalconductivity.Aluminiumcanalsobealloyedwithdifferentelementstoachievedesiredpropertiesforspecificapplications.Thesepropertiesmakeitasuitablematerialforconstruction,transportandelectronicsapplications.Duetoitsnon-toxicity,itisalsoextensivelyusedinfoodpackagingandasanadditivetohealthandhygieneproducts.Moreover,aluminiumplaysacrucialroleinfacilitatingtheenergytransitionduetoitsuseinsolarpanels,windturbines,electricvehiclesandtransmissioncables.
ThealuminiummarketwasworthapproximatelyUSD160billionin2022(GMI,n.d.).Theindustryisvitaltocommunitiesglobally,providingover7milliondirectandindirectjobsin2019(IAI,2021a).However,theproductionofaluminiumcreatessignificantgreenhousegas(GHG)emissions,emittingover1.1billiontonnesofCO2eq(tCO2eq)in2022(IAI,2023a).ItisthereforeessentialtofindwaystoeliminatethedetrimentalGHGemissionsfromaluminiumproductionwithoutimpedingtheessentialservicesthemetalprovides.Thisreportexaminestheroleofrenewableenergyinthedecarbonisationofaluminiumproduction.Italsoexploresotherleverstoreduceemissionsfromthesector,suchasmaterialefficiencyandrecycling.
Thisreportisintendedtoinformtheindustryandpolicymakersaboutwaysinwhichthealuminiumindustrycanminimiseitsemissionsthroughtheintegrationofincreasedrenewableenergysourcesandotherdecarbonisationlevers.Thereportisorganisedintothreechapters.Chapter1providesanoverviewofthestatusofthealuminiumindustry,includingitsenvironmentalimpact,andthecoststructureforproducingaluminaandaluminium.InChapter2,thereportexploreskeyleversfordecarbonisingthealuminiumindustry,inparticulartheroleofrenewableenergyinaluminiumsmelting.Chapter3evaluatestheprogressmadebyvariousstakeholdersindecarbonisingthesectorandpresentsrecommendationsforfurtherdecarbonisationefforts.
12|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY
REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY|
PAGE
45
PAGE
14
|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY
Aluminiumproductionprocesses
Aluminiumproductioninvolvesmultiplesteps,includingtheprocessingofbauxiteandalumina,theproductionofanodesandsmelting,thecastingandfabricationprocess,andcollectionandrecyclingafteruse(Figure1).
Figure1Aluminiumvaluechain
Bauxiteore,
therawmaterialforaluminium,ismined.
Achemicalprocessturnsbauxiteintoaluminiapowder.
Aluminaissmeltedintoaluminiumbyelectrolysis.
Casthouse
Recyclingreturnsittotheproductionprocess.
Eachoftheseproductshasitsownusablelifetime.
Theresultingmaterials
aremanufacturedintoproducts.
Metalisalloyed
andprocessedbycasting,rollingorextrusion.
Basedon:(ALCircle,2017).
Theprimaryrawmaterialforaluminiumisbauxiteore.Minedbauxiteiscrushedandwashedbeforebeingshippedtoaluminarefineries.Thebauxiteisthengroundandblendedintoaliquorcontainingsodiumcarbonateandsodiumhydroxide.Themixtureisthenheatedtoabout110-270°Cinadigestertanktoobtainhydratedaluminacrystalsafterprecipitation.Thesecrystalsarethenheatedinacalcinertodriveoffcombinedwater,leavingalumina.ThealuminathengoesthroughtheHall-Héroultprocess1forthesmeltingofprimaryaluminium.Theprocessinvolvespassinganelectriccurrentthroughamoltenmixtureofcryolite,2aluminaandaluminiumfluoridetoobtainpure,liquidaluminiummetal.Asaruleofthumb,roughlyfivetonnesofbauxiteisrefinedfortwotonnesofalumina,andagain,twotonnesofaluminaissmeltedforonetonneofaluminium(MPPetal.,2023).
Smeltersrequireanodes,whichareessentiallylargecarbonblocksthatconductelectricityduringthealuminiumreductionprocessinthesmelter.TheseblocksdecomposeandreleaseCO2duringtheproductionprocessandmustbereplacedatperiodicintervals.
Moltenaluminiumfromsmeltingpotsiscastintodifferentshapessuchasingotsandbillets,inacasthouse.
TheHall-Héroultprocessisamethodforextractingaluminiumfromalumina(aluminiumoxide)byelectrolysis.Itistheprimaryprocessemployedinindustrialaluminiumproductionandittypicallyoperatesat950-980°C.
Cryoliteisamineralmainlyusedasasolventtolowerthemeltingpointofaluminaintheelectrolyticproductionofaluminium.
Moltenaluminiumcanalsobetransferredtoanotherfurnace,wheredifferentalloyingelementscanbeaddedtothemelt.Theseprocessesleadtotheproductionofsemi-finishedaluminiumproducts,whicharesubsequentlyturnedintofinishedgoods.
Forsecondaryproduction,aluminiumfromproductsattheendoftheirlifeorfromscrapproducedduringmanufacturingprocessescaneitherberemeltedorrefinedandthensentbacktothecastingprocess.Theremeltingprocessuseshigh-purityscrap,whilerefininguseslower-qualityscrapwithvaryinglevelsofimpurities.
Thealuminiumsectortoday
Primaryaluminiumproductionhasbeensteadilygrowing,fromjustover15milliontonnes(Mt)peryearin1980tocloseto70Mt/yearin2023(Figure2).TheincreaseinproductionisdrivengreatlybystrongdemandinAsia,particularlyChina.Asia’sproductioncapacitygrewfromjust1.5Mt/yearin1980toover45Mt/yearin2022duetorapidindustrialisationintheeconomiesoftheregion.
Theroleofscraprecyclinghasalsoincreasedsignificantlysincethestartofthecentury,morethandoublingfrom17Mtin2005toover43Mtin2023(IAI,2021b).
Figure2Historicalgrowthinprimaryaluminiumproduction
80
Primaryaluminiumproduction[Mt]
70
60
50
40
30
20
10
-
1980 1985 1990 1995 2000 2005 2010 2015 2020 2023
Source:(IAI,2023a).
BauxiteisminedpredominantlyinAustralia,China,GuineaandIndonesia.Thesecountriesproducedaroundthree-fifthsofbauxitegloballyin2021.Chinaalsodominatestheproductionofbothaluminaandaluminium,accountingforapproximatelythree-fifthsofaluminaandaluminiumoutput(Figure3).
Figure3Regionalmixofbauxite,aluminaandaluminiumproduction
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
Bauxiteproduction Aluminaproduction Aluminiumproduction
Africa&Asia(excl.China)China
NorthAmericaSouthAmericaEurope
Oceania
MiddleEastOthers
Sources:(IAI,2023a;USGS,2023).
Note:EuropeincludesestimatesfromtheRussianFederation.
Downstreamprocessingandmanufacturingofaluminiumproductsislocatedclosertomarkets.AluminiumuseisalsoconcentratedinAsia,whichaccountedforjustover70%ofthealuminiumusedin2021(Figure4).Notably,Chinawasthelargestsingleconsumerofaluminium,withclosetohalfoftheglobaluse.
Figure4Regionalmixofaluminiumconsumption
Domesticaluminiumuse
0% 10%
20%
30% 40% 50% 60% 70% 80% 90% 100%
Africa&Asia(excl.China)China
NorthAmericaSouthAmericaEurope
Oceania
MiddleEastOthers
Source:(IAI,2023b).
Thedemandforaluminiumiscloselytiedtoeconomicactivityasitisessentialinvarioussectors.AsshowninFigure5,justover70%ofthedemandforaluminiumcomesfromtheconstruction(25%),transport(23%),electricalapplications(12%),andmachineryandequipment(10%)sectorscombined.Thedemandforaluminiumisexpectedtogrowbyabout30%inthisdecade,mainlydrivenbytheadoptionofrenewableenergytechnologiesandelectricvehicles(CRU,2022).Sustainablepackagingsolutionswillalsobeakeycontributortothegrowthofaluminiumuse.
Figure5Breakdownofaluminiumdemandbyuse
Aluminiumconsumption
0% 10%
20%
30% 40% 50% 60% 70% 80% 90% 100%
ConstructionTransportElectrical
MachineryandequiptmentFoilstock
Packaging
ConsumerdurablesOther
Source:(CRU,2022).
Aluminiumisagloballytradedcommodity,withitspricesbenchmarkedinternationallyonplatformssuchastheLondonMetalsExchange(LME),ShanghaiFuturesExchange(SHFE)andNewYorkMercantileExchange(NYMEX).Mostaluminiumistradedwithoutanyenvironmentalattributes.However,severalcommodityinsightsplatformslikeFastmarketsandS&Phavelaunchedlow-carbonaluminiumindices,whichtrackthepremiumforlow-carbonaluminiumproductsinEurope(Peters,2024;S&PGlobal,2022).Theseinitiativesaimtobringclarityandtransparencytothemarketforlow-carbonaluminium.Theydefinelow-carbonprimaryaluminiumashavingemissionslowerthan4tCO2eq/tAl(primary)basedonscope1andscope2emissions(Peters,2024;S&PGlobal,2022).
Environmentalrelevanceofthealuminiumsector
In2022thealuminiumsectoremittedaround1.1gigatonnes(Gt)ofCO2eqemissions(IAI,2023a).Thisisequivalenttoroughly16tCO2eq/tAl(primary)producedand0.5tCO2eq/tAl(secondary)produced(MPPetal.,2023).3
AsshowninFigure6,thereareseveralsourcesofemissionsinthealuminiumproductionvaluechain.Smeltingisthelargestsourceofemissionsinaluminiumproduction,accountingforclosetothree-quartersofthesector’semissionsglobally.Whilesomeregionsheavilydependonrenewablesorhydropowerfortheirpowersupply,otherspredominantlyrelyoncoal,leadingtosignificantvariationsintheemissionsintensityofthesmeltingprocessacrossdifferentjurisdictions(IRENA,2020).
Cradle-to-grave.
InadditiontoCO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院幼兒護(hù)理視頻課件
- 2024年智能人體秤項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2024年硅系鐵合金資金籌措計(jì)劃書代可行性研究報(bào)告
- 落實(shí)檢察官登記管理辦法
- 2024年特種運(yùn)輸資金需求報(bào)告代可行性研究報(bào)告
- 融媒體教室使用管理辦法
- 衡水消防車管理辦法規(guī)定
- 行政執(zhí)法公務(wù)員管理辦法
- 裝配式住宅運(yùn)輸管理辦法
- 西安市疫情分級(jí)管理辦法
- 2025至2030中國素食食品行業(yè)發(fā)展分析及發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報(bào)告
- 2025年天津出租車考試資料
- 2024年廣州市荔灣區(qū)社區(qū)專職招聘筆試真題
- 《人工智能基礎(chǔ)與應(yīng)用》課件 項(xiàng)目1 認(rèn)識(shí)人工智能
- 網(wǎng)絡(luò)貨運(yùn)安全管理制度
- 2025至2030全球及中國溴化聚苯乙烯(BPS)行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報(bào)告
- 文化認(rèn)同機(jī)制構(gòu)建-洞察及研究
- 校園外賣公司管理制度
- BA系統(tǒng)對(duì)電氣設(shè)備動(dòng)力柜(箱)的自控接口要求
- 汕尾市市直單位招聘政府聘員筆試真題2024
- 遼寧省鐵嶺市鐵嶺縣2023-2024學(xué)年七年級(jí)下學(xué)期7月期末考試地理試卷(含答案)
評(píng)論
0/150
提交評(píng)論