IRENA-鋁工業(yè)利用可再生能源實(shí)現(xiàn)零排放-2025_第1頁
IRENA-鋁工業(yè)利用可再生能源實(shí)現(xiàn)零排放-2025_第2頁
IRENA-鋁工業(yè)利用可再生能源實(shí)現(xiàn)零排放-2025_第3頁
IRENA-鋁工業(yè)利用可再生能源實(shí)現(xiàn)零排放-2025_第4頁
IRENA-鋁工業(yè)利用可再生能源實(shí)現(xiàn)零排放-2025_第5頁
已閱讀5頁,還剩59頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

REACHINGZEROWITHRENEWABLES

ALUMINIUM

13

INDUSTRY

Al

PAGE

10

|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY

REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY|

PAGE

3

?IRENA2025

Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.

ISBN:978-92-9260-649-7

Citation:IRENA(2025),Reachingzerowithrenewables:Aluminiumindustry,InternationalRenewableEnergyAgency,AbuDhabi.

Availablefordownload:

/publications

Forfurtherinformationortoprovidefeedback,pleasecontactIRENAat

publications@.

AboutIRENA

TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.

Acknowledgements

ThereportwasauthoredbyKaranKochharandLuisJaneiroundertheguidanceofFranciscoBoshellandRolandRoesch(Director,IRENAInnovationandTechnologyCentre).PernelleNunezandLinlinWu(InternationalAluminiumInstitute)providedsubstantialinputstothereport’sconcept,developmentandextensivefeedbackontheanalysis.

DrMartinIffert(EnergyPool,MartinIffertConsulting)providedsubstantialbackgroundinformationandfeedback.ZafarSamadov,AbdullahFahad,YongChen,AdrianGonzalezandSeanCollins(IRENA),andMarlenBertram(IAI)andMarghanitaJohnson(AustraliaAluminiumCouncil),providedvaluablereviews.IRENAisgratefultoIAI’sEnergyandEnvironmentCommitteeforitsfeeedbackontheinitialfindingsofthereport.

Thereportwascopy-editedbyJustinFrench-BrooksandtechnicalreviewwasprovidedbyPaulKomor.EditorialsupportwasprovidedbyFrancisFieldandStephanieClarke.DesignwasprovidedbyStrategicAgenda.

Disclaimer

Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.

TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.

Contents

Executivesummary 7

Introduction 11

Aluminiumproductionprocesses 13

Thealuminiumsectortoday 14

Environmentalrelevanceofthealuminiumsector 16

Energycostsensitivityinthealuminiumindustry 19

Transformationpillars:Towardsnetzerointhealuminiumsector 20

PillarI:Renewableenergysupplyforsmeltingandaluminarefining 22

PillarII:Maximisethepotentialofmaterialefficiencyandrecycledaluminium 42

PillarIII:Additionaldecarbonisationlevers 51

Acceleratingthetransitiontowardsnetzerointhealuminiumindustry 53

Recentprogressinthetransitionofthealuminiumindustry 54

Keyconsiderationsfordecisionmakers 55

Keyactionstoacceleratethetransitioninthealuminiumindustry 57

References 59

Figures

FigureS1

Keyareasofactiontodecarbonisethealuminiumsector

9

Figure1

Aluminiumvaluechain

13

Figure2

Historicalgrowthinprimaryaluminiumproduction

14

Figure3

Regionalmixofbauxite,aluminaandaluminiumproduction

15

Figure4

Regionalmixofaluminiumconsumption

15

Figure5

Breakdownofaluminiumdemandbyuse

16

Figure6

GHGemissionsfromprimaryaluminiumvaluechain

17

Figure7

Evolutionoffuelmixinaluminarefining(top)andpowermixinaluminiumsmelting(bottom)

18

Figure8

Shareofenergycostsasafractionoftotalproductioncostsinaluminarefiningandaluminium

smelting

19

Figure9

OverviewoffactorsoftheGHGimpactsofaluminiumsector,andpillarsfordecarbonisation

21

Figure10

Electricity-relatedemissionsinprimaryaluminiumproduction

2

2

Figure11

GlobalLCOEfromnewlycommissionedutility-scalerenewableenergytechnologies,2010-2023

24

Figure12

LCOEofutility-scalesolarPV(top)andonshorewind(below)comparedwithfossilfuel

generationinregionswithaluminiumsmeltingcapacityrespectively

25

Figure13

Annualpowergenerationcapacityadditions

26

Figure14

Globalpowergenerationmixandinstalledcapacitybyenergysource:PlannedEnergy

Scenarioand1.5°CScenarioin2020,2030and2050

27

Figure15

Modelsforsourcingrenewableelectricityforaluminiumsmelting

29

Figure16

Powersystemflexibilityenablers

31

Figure17

Schematicofflowsofelectricitytoanaluminiumsmelteroperatingwithrenewable

energyandstorage

3

3

Figure18

AveragehourlyoutputofasolarPVandsmelterloadperMWofcapacityinstalled

33

Figure19

LoaddurationcurveforsolarPVplantwithoutabatteryvssmelterloadforlocation1

34

Figure20

LoaddurationcurveforsolarPVplantwithabatteryvssmelterloadforlocation1

35

Figure21

AveragehourlyoutputofsolarPVandonshorewindplantsvssmelterloadperMW

ofcapacityinstalled

3

6

Figure22

LoaddurationcurveforthesolarPV,windplantwithoutabatteryandthesmelterforlocation2

36

Figure23

LoaddurationcurveforthesolarPV,windplantwithabatteryandthesmelterforlocation2

37

Figure24Systemicinnovationapproaches 3

8

Figure25RefiningbauxitetoaluminausingtheBayerprocess 40

Figure26Resourceandeconomicefficiencyinaluminium 42

Figure27Shareofscrapinaluminiumproductionin2021 47

Figure28Potentialroleofrecyclinginfuturealuminiumproduction 48

Figure29Roleofrecyclingandmaterialefficiencymeasuresinaluminiumsectorin2050 50

Figure30Energyintensityofmetallurgicalaluminarefining(top)andprimaryaluminiumsmelting(bottom)52

Tables

Table1

SolarPVandwindPPAsplannedforaluminiumsmelting(non-exhaustive)

28

Table2

SystemicinnovationforflexiblesmeltingoperationandintegrationofVREintothegrid

39

Table3

Decarbonisationoptionsforaluminarefiningprocess

41

Table4

Materialefficiencyprinciplesindifferentendusesofaluminium

43

Table5

Energyandemissionsintensityofdifferentaluminiumproductionroutes

45

Table6

Estimatedpost-consumerscrapcollectionratesin2020

46

Table7

Summaryofactionstoacceleratethetransitioninthealuminiumsector

59

Abbreviations

Al

aluminium

kWh

kilowatthour

BAU

businessasusual

LCOE

levelisedcostofelectricity

COP28

28thmeetingoftheConferenceoftheParties

MBtu

millionBritishthermalunits

MPP

MissionPossiblePartnership

CO2

carbondioxide

Mt

milliontonnes

CO2eq

carbondioxideequivalent

MVR

mechanicalvapourrecompression

CST

concentratedsolarthermal

MW

megawatt

DR

demandresponse

MWp

megawattpeak

EJ

exajoule

OCGT

open-cyclegasturbine

FMC

FirstMover’sCoalition

PES

IRENAPlannedEnergyScenario

GHG

greenhousegas

PPA

powerpurchaseagreement

GJ

gigajoule

PV

photovoltaic

GO

guaranteeoforigin

RD&D

research,developmentanddemonstration

Gt

gigatonne

R&D

researchanddevelopment

GW

gigawatt

SO2

sulphurdioxide

GWh

gigawatthour

t

tonne

IAI

InternationalAluminiumInstitute

TWh

terawatthour

IEA

InternationalEnergyAgency

VRE

variablerenewableenergy

IRENA

InternationalRenewableEnergyAgency

Executivesummary

13

Al

PAGE

8

|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY

Aluminiumisahighlyversatilemetalduetoitslightweightnature,highstrength,recyclabilityandgoodconductivity,anditiscrucialinseveralindustries,includingpackaging,transport,electronics,constructionandrenewableenergy.Theuseofaluminiumhassignificantlyexpandedinthepastfewdecadesduetothedevelopmentofnewmarketsandapplicationsandeconomicgrowth,particularlyinemergingeconomies.Whilealuminiumprovidesmajorvaluetomodernsocieties,itisalsoasignificantcontributortoclimatechange.Aluminiumproductionaccountedforabout1.1gigatonnes(Gt)ofcarbondioxide(CO2)emissionsin2022,mainlyduetoaluminiumproduction’srelianceonfossilfuelsforenergysupply.

Aluminiumproductionisprojectedtoincreasebymorethanathirdby2050.Withoutmeasurestodecarbonisethesector,emissionsfromthealuminiumindustrywillcontinuetorise.Thisreportprovidesinsightsforindustryandpolicymakersontheroleofrenewableenergyandotherleverstoreduceemissionsfromthealuminiumsector.

Aluminiumsmelting–extractingaluminiummetalfromitsrefinedore-accountsforaboutthree-quartersofthetotalCO2emissionsfromproduction(pertonne,globalaverage).Smeltingreliesprimarilyonelectricityasenergyinput.Hence,emissionsfromsmeltingvaryconsiderablydependingontheelectricitymix;smeltersusingrenewableenergysourceslikehydropowerhaveloweremissionsthanthosedependentonfossilfuels.Thus,integratingincreasingamountsofrenewableenergysourcessuchaswindandsolarinsteadoffossilfuelsisakeysolutiontoreducethesector’scarbonfootprint.

Inthelastdecademodernrenewableenergytechnologies,suchassolarphotovoltaic(PV)andwind,havebecomethecheapestsourcesofnewpowergenerationinmostmarketsaroundtheworld.Furthermore,solarPVandwindhavepotentialforfurthercostreductionsthrougheconomiesofscaleandtechnologicaladvancements.Therefore,theyaresettobecomethebackboneofglobaldecarbonisedpowersupplyandwillplayakeyroleinthedecarbonisationofthealuminiumsector.Overtime,locationswiththehighestqualityandavailabilityofrenewableresourcescouldprovidethemostcompetitivelocationsforaluminiumproduction.

ByintegratingsolarPVandwindinsmelting,aluminiumproducerscanleadtheindustry’stransitioninlinewiththeParisAgreement.SeveralsmeltersalreadyplantointegratesolarPVandwindpowercapacitythroughlong-termpowerpurchaseagreements(PPAs).However,mostsmelterscontinuetofinditchallengingtosecureattractiverenewableenergyPPAsduetoacombinationoffactors.Theseincluderegulatoryandmarketbarrierspreventingrapiddeploymentofrenewables,aswellashighdemandforlow-carbonelectricity,whichcandriveuppricesbeyondthelevelaluminiumproducerscanpay,giventheindustry’stightmargins.Also,thevariabilityofsolarandwindisachallengeforsmelters,whichtraditionallyrequireaconstantpowersupply.

Thereisnosingle“one-size-fits-all”solutiontointegratinghighsharesofmodernrenewableenergyintoaluminiumsmelting.Theoptionsavailabletoasmelterdependontheavailabilityofrenewableenergysourcesinthesmelter’slocation,theavailabilityofpowersystemflexibilitysolutionsintheregion,andthedegreeofoperationalflexibilityofthesmelteritself.

TheothertwomajorsourcesofCO2emissionsarefromrefiningaluminaandcarbonanodes.ThesesourcescontributealmostafifthofthetotalCO2emissionsfromprimaryproductionand,inregionswherelow-carbonelectricityisalreadyutilisedforsmelting,areasignificantpartofemissions.Adeepdecarbonisationofthealuminiumsectorwouldinvolvewidescaleadoptionoflow-carbonrefiningprocessesandinertanodes.However,thecostsforlow-carbonrefiningprocesses,inmanycases,arestillhigh,andinertanodesarenotyetcommerciallyavailable.

FigureS1Keyareasofactiontodecarbonisethealuminiumsector

Leveltheplayingfieldforlow-carbonaluminium

Increaseshareofrenewablesinthepowersupplytothealuminiumsector

Increaseuptakeoflow-emissionsrefiningprocess

Commercialiseinertanodes

Improvematerialandenergyuseinproductionandmanufacturing

Despitethechallenges,thealuminiumsectoristakingstepstowardsreducingitsemissions.SeveralproducersalreadyaimtointegraterenewablesintosmeltingandhavebeeninvolvedinRD&Dinitiativestoreduceemissionsfromotherareasofaluminiumproduction.Therehasalsobeenprogressincatalysingdemandforlow-carbonaluminium.Differentactorsareinvolvedininitiativestotrackemissions,encouragetheflowoffinancetowardslow-carbonaluminium,andcollaboratewithotherplayersonindustrydecarbonisationinitiatives.

However,decarbonisingthealuminiumindustryinlinewiththegoalsoftheParisAgreementwillrequiremoreproactiveandcollaborativeeffortsinvolvinggovernments,producers,consumers,academiaandnon-stateactors.

Onanoverarchinglevel,asupportivepolicyenvironmentisessentialtoacceleratethealuminiumsector’sdecarbonisation.Thealuminiumindustry,projectdevelopersandinvestorswillrequireclear,stableandcrediblesignalsofdecarbonisationgoalsandadequateeconomicincentivestofacilitateinvestmentdecisionsonlow-carbontechnologies.Zoomingin,thisrequiresafocusonspecificstrategicareastodrivechangeeffectively.

Acriticalfirststepistocreatealevel-playingforlow-carbonaluminiumbyinternalisingthefullcostofthenegativeenvironmentalexternalitiesoffossilenergyand/orcreatingamarketforlow-carbonaluminium.Thelatterincludesgrowingdemandthroughpublicprocurementandprivate-sectorinitiativessuchasvoluntaryschemesandpartnershipswithproducers.Creatingandimplementingrobuststandards,certificationandlabellingschemescouldfurtherenablethemarket.

REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY|9

PAGE

10

|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY

Atthecoreofthesector’stransformationisincreasingtheshareofrenewableenergysupplytothealuminiumsector,particularlyforsmelting.Thisincludesrapiddevelopmentofthesupplyofrenewablestotriplerenewableenergycapacityby2030,inlinewiththegoalexpressedintheOutcomeoftheFirstGlobalStocktakeatCOP28,knownasthe‘UAEConsensus’.Governmentscanfacilitatethisgrowthbyreducingbarrierstodevelopingandintegratingrenewableenergyintopowersystems.Aluminiumproducerscanalsoexploreintegratingrenewablepowersupplyintotheiroperationsthroughdifferentmechanisms.

Whilesmeltingisthelargestsourceofemissions,itisimportanttopayattentiontotheothersourcestoachievedeepdecarbonisation.Forthis,promotinglow-emissionrefiningofbauxiteisimportant.Tothisend,governmentscouldprovideeconomicincentivesforadoptinglow-carbonrefiningtechnologiesordirectfundingorsupportforresearch.AluminiumproducerscouldalsoincreaseeffortsinRD&Dforlow-emissionrefiningtechnologiesincollaborationwithotheractors.Anotherimportantleverfordeepdecarbonisationisthecommercialisationofinertanodes,whichrequiresindustryandresearchinstitutionstoworktogethertoaddressremainingoperationalgapsandefficientlyrolloutthetechnology.

Somepotentialalsoremainstoimprovematerialandenergyuseintheindustry.Thiswillinvolveallstakeholdersinimplementingdifferentinitiatives,suchasinvestinginR&D,adoptingadvancedtechnologies,enforcingstandards,andpromotingbestpracticesforscrapcollectionandinnovativealloydevelopment.

Introduction

13

Al

Aluminiumoffersexceptionalversatility.Itsupportswide-rangingapplications,inpackaging,cars,andelectriccablesandequipment,amongothercrucialapplicationsvitaltohumanprogress.Aluminium’sversatilityisduetoitshighstrength,lightweight,recyclability,andexcellentelectricalandthermalconductivity.Aluminiumcanalsobealloyedwithdifferentelementstoachievedesiredpropertiesforspecificapplications.Thesepropertiesmakeitasuitablematerialforconstruction,transportandelectronicsapplications.Duetoitsnon-toxicity,itisalsoextensivelyusedinfoodpackagingandasanadditivetohealthandhygieneproducts.Moreover,aluminiumplaysacrucialroleinfacilitatingtheenergytransitionduetoitsuseinsolarpanels,windturbines,electricvehiclesandtransmissioncables.

ThealuminiummarketwasworthapproximatelyUSD160billionin2022(GMI,n.d.).Theindustryisvitaltocommunitiesglobally,providingover7milliondirectandindirectjobsin2019(IAI,2021a).However,theproductionofaluminiumcreatessignificantgreenhousegas(GHG)emissions,emittingover1.1billiontonnesofCO2eq(tCO2eq)in2022(IAI,2023a).ItisthereforeessentialtofindwaystoeliminatethedetrimentalGHGemissionsfromaluminiumproductionwithoutimpedingtheessentialservicesthemetalprovides.Thisreportexaminestheroleofrenewableenergyinthedecarbonisationofaluminiumproduction.Italsoexploresotherleverstoreduceemissionsfromthesector,suchasmaterialefficiencyandrecycling.

Thisreportisintendedtoinformtheindustryandpolicymakersaboutwaysinwhichthealuminiumindustrycanminimiseitsemissionsthroughtheintegrationofincreasedrenewableenergysourcesandotherdecarbonisationlevers.Thereportisorganisedintothreechapters.Chapter1providesanoverviewofthestatusofthealuminiumindustry,includingitsenvironmentalimpact,andthecoststructureforproducingaluminaandaluminium.InChapter2,thereportexploreskeyleversfordecarbonisingthealuminiumindustry,inparticulartheroleofrenewableenergyinaluminiumsmelting.Chapter3evaluatestheprogressmadebyvariousstakeholdersindecarbonisingthesectorandpresentsrecommendationsforfurtherdecarbonisationefforts.

12|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY

REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY|

PAGE

45

PAGE

14

|REACHINGZEROWITHRENEWABLES:ALUMINIUMINDUSTRY

Aluminiumproductionprocesses

Aluminiumproductioninvolvesmultiplesteps,includingtheprocessingofbauxiteandalumina,theproductionofanodesandsmelting,thecastingandfabricationprocess,andcollectionandrecyclingafteruse(Figure1).

Figure1Aluminiumvaluechain

Bauxiteore,

therawmaterialforaluminium,ismined.

Achemicalprocessturnsbauxiteintoaluminiapowder.

Aluminaissmeltedintoaluminiumbyelectrolysis.

Casthouse

Recyclingreturnsittotheproductionprocess.

Eachoftheseproductshasitsownusablelifetime.

Theresultingmaterials

aremanufacturedintoproducts.

Metalisalloyed

andprocessedbycasting,rollingorextrusion.

Basedon:(ALCircle,2017).

Theprimaryrawmaterialforaluminiumisbauxiteore.Minedbauxiteiscrushedandwashedbeforebeingshippedtoaluminarefineries.Thebauxiteisthengroundandblendedintoaliquorcontainingsodiumcarbonateandsodiumhydroxide.Themixtureisthenheatedtoabout110-270°Cinadigestertanktoobtainhydratedaluminacrystalsafterprecipitation.Thesecrystalsarethenheatedinacalcinertodriveoffcombinedwater,leavingalumina.ThealuminathengoesthroughtheHall-Héroultprocess1forthesmeltingofprimaryaluminium.Theprocessinvolvespassinganelectriccurrentthroughamoltenmixtureofcryolite,2aluminaandaluminiumfluoridetoobtainpure,liquidaluminiummetal.Asaruleofthumb,roughlyfivetonnesofbauxiteisrefinedfortwotonnesofalumina,andagain,twotonnesofaluminaissmeltedforonetonneofaluminium(MPPetal.,2023).

Smeltersrequireanodes,whichareessentiallylargecarbonblocksthatconductelectricityduringthealuminiumreductionprocessinthesmelter.TheseblocksdecomposeandreleaseCO2duringtheproductionprocessandmustbereplacedatperiodicintervals.

Moltenaluminiumfromsmeltingpotsiscastintodifferentshapessuchasingotsandbillets,inacasthouse.

TheHall-Héroultprocessisamethodforextractingaluminiumfromalumina(aluminiumoxide)byelectrolysis.Itistheprimaryprocessemployedinindustrialaluminiumproductionandittypicallyoperatesat950-980°C.

Cryoliteisamineralmainlyusedasasolventtolowerthemeltingpointofaluminaintheelectrolyticproductionofaluminium.

Moltenaluminiumcanalsobetransferredtoanotherfurnace,wheredifferentalloyingelementscanbeaddedtothemelt.Theseprocessesleadtotheproductionofsemi-finishedaluminiumproducts,whicharesubsequentlyturnedintofinishedgoods.

Forsecondaryproduction,aluminiumfromproductsattheendoftheirlifeorfromscrapproducedduringmanufacturingprocessescaneitherberemeltedorrefinedandthensentbacktothecastingprocess.Theremeltingprocessuseshigh-purityscrap,whilerefininguseslower-qualityscrapwithvaryinglevelsofimpurities.

Thealuminiumsectortoday

Primaryaluminiumproductionhasbeensteadilygrowing,fromjustover15milliontonnes(Mt)peryearin1980tocloseto70Mt/yearin2023(Figure2).TheincreaseinproductionisdrivengreatlybystrongdemandinAsia,particularlyChina.Asia’sproductioncapacitygrewfromjust1.5Mt/yearin1980toover45Mt/yearin2022duetorapidindustrialisationintheeconomiesoftheregion.

Theroleofscraprecyclinghasalsoincreasedsignificantlysincethestartofthecentury,morethandoublingfrom17Mtin2005toover43Mtin2023(IAI,2021b).

Figure2Historicalgrowthinprimaryaluminiumproduction

80

Primaryaluminiumproduction[Mt]

70

60

50

40

30

20

10

-

1980 1985 1990 1995 2000 2005 2010 2015 2020 2023

Source:(IAI,2023a).

BauxiteisminedpredominantlyinAustralia,China,GuineaandIndonesia.Thesecountriesproducedaroundthree-fifthsofbauxitegloballyin2021.Chinaalsodominatestheproductionofbothaluminaandaluminium,accountingforapproximatelythree-fifthsofaluminaandaluminiumoutput(Figure3).

Figure3Regionalmixofbauxite,aluminaandaluminiumproduction

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Bauxiteproduction Aluminaproduction Aluminiumproduction

Africa&Asia(excl.China)China

NorthAmericaSouthAmericaEurope

Oceania

MiddleEastOthers

Sources:(IAI,2023a;USGS,2023).

Note:EuropeincludesestimatesfromtheRussianFederation.

Downstreamprocessingandmanufacturingofaluminiumproductsislocatedclosertomarkets.AluminiumuseisalsoconcentratedinAsia,whichaccountedforjustover70%ofthealuminiumusedin2021(Figure4).Notably,Chinawasthelargestsingleconsumerofaluminium,withclosetohalfoftheglobaluse.

Figure4Regionalmixofaluminiumconsumption

Domesticaluminiumuse

0% 10%

20%

30% 40% 50% 60% 70% 80% 90% 100%

Africa&Asia(excl.China)China

NorthAmericaSouthAmericaEurope

Oceania

MiddleEastOthers

Source:(IAI,2023b).

Thedemandforaluminiumiscloselytiedtoeconomicactivityasitisessentialinvarioussectors.AsshowninFigure5,justover70%ofthedemandforaluminiumcomesfromtheconstruction(25%),transport(23%),electricalapplications(12%),andmachineryandequipment(10%)sectorscombined.Thedemandforaluminiumisexpectedtogrowbyabout30%inthisdecade,mainlydrivenbytheadoptionofrenewableenergytechnologiesandelectricvehicles(CRU,2022).Sustainablepackagingsolutionswillalsobeakeycontributortothegrowthofaluminiumuse.

Figure5Breakdownofaluminiumdemandbyuse

Aluminiumconsumption

0% 10%

20%

30% 40% 50% 60% 70% 80% 90% 100%

ConstructionTransportElectrical

MachineryandequiptmentFoilstock

Packaging

ConsumerdurablesOther

Source:(CRU,2022).

Aluminiumisagloballytradedcommodity,withitspricesbenchmarkedinternationallyonplatformssuchastheLondonMetalsExchange(LME),ShanghaiFuturesExchange(SHFE)andNewYorkMercantileExchange(NYMEX).Mostaluminiumistradedwithoutanyenvironmentalattributes.However,severalcommodityinsightsplatformslikeFastmarketsandS&Phavelaunchedlow-carbonaluminiumindices,whichtrackthepremiumforlow-carbonaluminiumproductsinEurope(Peters,2024;S&PGlobal,2022).Theseinitiativesaimtobringclarityandtransparencytothemarketforlow-carbonaluminium.Theydefinelow-carbonprimaryaluminiumashavingemissionslowerthan4tCO2eq/tAl(primary)basedonscope1andscope2emissions(Peters,2024;S&PGlobal,2022).

Environmentalrelevanceofthealuminiumsector

In2022thealuminiumsectoremittedaround1.1gigatonnes(Gt)ofCO2eqemissions(IAI,2023a).Thisisequivalenttoroughly16tCO2eq/tAl(primary)producedand0.5tCO2eq/tAl(secondary)produced(MPPetal.,2023).3

AsshowninFigure6,thereareseveralsourcesofemissionsinthealuminiumproductionvaluechain.Smeltingisthelargestsourceofemissionsinaluminiumproduction,accountingforclosetothree-quartersofthesector’semissionsglobally.Whilesomeregionsheavilydependonrenewablesorhydropowerfortheirpowersupply,otherspredominantlyrelyoncoal,leadingtosignificantvariationsintheemissionsintensityofthesmeltingprocessacrossdifferentjurisdictions(IRENA,2020).

Cradle-to-grave.

InadditiontoCO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論