浙江特殊教育職業(yè)學(xué)院《圖形設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
浙江特殊教育職業(yè)學(xué)院《圖形設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
浙江特殊教育職業(yè)學(xué)院《圖形設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
浙江特殊教育職業(yè)學(xué)院《圖形設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
浙江特殊教育職業(yè)學(xué)院《圖形設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁浙江特殊教育職業(yè)學(xué)院《圖形設(shè)計(jì)》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行圖像配準(zhǔn)(ImageRegistration)時,即對齊兩幅或多幅圖像,假設(shè)我們要將不同時間拍攝的同一地區(qū)的衛(wèi)星圖像進(jìn)行配準(zhǔn),由于地形變化和拍攝角度的差異,以下哪個因素可能對配準(zhǔn)精度產(chǎn)生最大影響?()A.圖像的分辨率B.選擇的特征點(diǎn)數(shù)量C.圖像的灰度值D.地理坐標(biāo)信息的準(zhǔn)確性2、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的一步。以下關(guān)于特征提取方法的描述,不準(zhǔn)確的是()A.傳統(tǒng)的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場景下仍然有效B.深度學(xué)習(xí)中的自動特征提取能夠?qū)W習(xí)到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類、目標(biāo)檢測等任務(wù)的性能D.特征提取只關(guān)注圖像的局部信息,而忽略了全局信息3、在計(jì)算機(jī)視覺的圖像修復(fù)任務(wù)中,假設(shè)圖像中有大面積的損壞或缺失區(qū)域,以下哪種方法可能更依賴于對圖像全局結(jié)構(gòu)的理解?()A.基于紋理合成的方法B.基于擴(kuò)散的方法C.基于深度學(xué)習(xí)的方法D.基于樣例的方法4、計(jì)算機(jī)視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關(guān)于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學(xué)習(xí)方法在行人重識別任務(wù)中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達(dá)到100%的準(zhǔn)確率5、計(jì)算機(jī)視覺中的圖像語義分割需要為圖像中的每個像素分配類別標(biāo)簽。假設(shè)要對一張城市街景圖像進(jìn)行語義分割,包括道路、建筑物、車輛和行人等。以下哪種圖像語義分割方法在處理這種復(fù)雜場景時能夠提供更精細(xì)的分割結(jié)果?()A.全卷積網(wǎng)絡(luò)(FCN)B.U-NetC.SegNetD.DeepLab6、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要在一段視頻中持續(xù)跟蹤一個移動的物體,例如跟蹤一只飛行的鳥。物體可能會被其他物體遮擋,并且外觀可能會發(fā)生變化。以下哪種目標(biāo)跟蹤方法在這種復(fù)雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預(yù)測物體的位置和速度B.基于深度學(xué)習(xí)的Siamese網(wǎng)絡(luò)跟蹤方法C.只在視頻的起始幀確定目標(biāo)位置,后續(xù)幀不再跟蹤D.隨機(jī)選擇視頻中的區(qū)域作為跟蹤目標(biāo)7、在計(jì)算機(jī)視覺的應(yīng)用中,人臉識別是一個常見的任務(wù)。假設(shè)一個公司要建立一個門禁系統(tǒng),通過人臉識別來允許員工進(jìn)入。為了提高人臉識別的準(zhǔn)確性和魯棒性,以下哪種技術(shù)通常會被采用?()A.基于幾何特征的人臉識別B.基于模板匹配的人臉識別C.基于深度學(xué)習(xí)的人臉識別,結(jié)合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識別8、計(jì)算機(jī)視覺中的眼底圖像分析對于眼科疾病的診斷具有重要意義。以下關(guān)于眼底圖像分析的描述,不準(zhǔn)確的是()A.可以檢測眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學(xué)習(xí)方法在眼底圖像分析中能夠自動提取特征和進(jìn)行疾病分類C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專業(yè)的醫(yī)學(xué)知識標(biāo)注D.眼底圖像分析技術(shù)已經(jīng)非常成熟,能夠替代醫(yī)生的診斷9、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,目標(biāo)可能會被遮擋、變形或快速移動。假設(shè)要跟蹤一個在人群中快速移動的人物,以下哪種跟蹤算法可能更適合應(yīng)對這種復(fù)雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法10、計(jì)算機(jī)視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細(xì)節(jié)。假設(shè)要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時要保持圖像的自然度和真實(shí)性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學(xué)習(xí)的方法D.基于學(xué)習(xí)字典的方法11、計(jì)算機(jī)視覺中的工業(yè)檢測任務(wù)需要檢測產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對一批電子產(chǎn)品的外觀進(jìn)行檢測,要求快速準(zhǔn)確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測方法在處理這種高精度要求的任務(wù)時最為適用?()A.機(jī)器視覺檢測B.人工目檢C.抽樣檢測D.基于統(tǒng)計(jì)的檢測12、在計(jì)算機(jī)視覺的目標(biāo)識別任務(wù)中,假設(shè)要識別不同種類的水果。以下關(guān)于應(yīng)對類內(nèi)差異和類間相似性的策略,哪一項(xiàng)是不正確的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內(nèi)差異和類間相似性的影響C.降低模型的復(fù)雜度,避免過度擬合類內(nèi)差異和類間相似性D.忽略類內(nèi)差異和類間相似性,依靠模型的自動適應(yīng)能力13、在計(jì)算機(jī)視覺中,目標(biāo)檢測是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含眾多物體的復(fù)雜圖像中準(zhǔn)確檢測出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復(fù)雜。為了實(shí)現(xiàn)高精度的車輛檢測,以下哪種方法通常被認(rèn)為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測和形態(tài)學(xué)操作B.使用基于深度學(xué)習(xí)的目標(biāo)檢測算法,如FasterR-CNNC.采用簡單的模板匹配方法,根據(jù)預(yù)先定義的車輛模板進(jìn)行匹配D.對圖像進(jìn)行全局特征提取,然后基于這些特征進(jìn)行分類14、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)是指確定物體在三維空間中的位置和方向。以下關(guān)于姿態(tài)估計(jì)的說法,錯誤的是()A.姿態(tài)估計(jì)可以通過單目相機(jī)、雙目相機(jī)或深度相機(jī)來實(shí)現(xiàn)B.基于深度學(xué)習(xí)的方法在姿態(tài)估計(jì)任務(wù)中表現(xiàn)出了較高的精度C.姿態(tài)估計(jì)在機(jī)器人操作、增強(qiáng)現(xiàn)實(shí)等領(lǐng)域有著重要的應(yīng)用價值D.姿態(tài)估計(jì)的結(jié)果總是非常精確,不受物體形狀和遮擋的影響15、當(dāng)進(jìn)行圖像的顯著性檢測時,假設(shè)要從一張復(fù)雜的圖像中突出顯示出人們視覺上最關(guān)注的區(qū)域,例如在一張風(fēng)景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計(jì)算圖像的顯著性時可能更準(zhǔn)確?()A.基于頻率域分析的方法,計(jì)算圖像的頻譜特征B.基于對比度的方法,比較區(qū)域與周圍的差異C.隨機(jī)選擇圖像中的部分區(qū)域作為顯著性區(qū)域D.不進(jìn)行任何計(jì)算,主觀判斷顯著性區(qū)域16、計(jì)算機(jī)視覺中的動作識別是對視頻中人物或物體的動作進(jìn)行分類和理解。假設(shè)要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風(fēng)格的變化。以下哪種動作識別方法在處理這種復(fù)雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點(diǎn)的動作識別C.基于深度學(xué)習(xí)的時空卷積網(wǎng)絡(luò)D.基于隱馬爾可夫模型的動作識別17、在計(jì)算機(jī)視覺中,三維重建是從二維圖像恢復(fù)物體的三維結(jié)構(gòu)。以下關(guān)于三維重建的敘述,不正確的是()A.可以通過多視圖幾何、結(jié)構(gòu)光或深度學(xué)習(xí)方法進(jìn)行三維重建B.三維重建在虛擬現(xiàn)實(shí)、文物保護(hù)和工業(yè)設(shè)計(jì)等領(lǐng)域有著廣泛的應(yīng)用C.三維重建的結(jié)果總是精確無誤的,能夠完全還原物體的真實(shí)三維結(jié)構(gòu)D.噪聲、遮擋和圖像質(zhì)量等因素會對三維重建的結(jié)果產(chǎn)生影響18、在計(jì)算機(jī)視覺的目標(biāo)檢測中,對于小目標(biāo)的檢測往往具有較大的挑戰(zhàn)性。為了提高小目標(biāo)檢測的準(zhǔn)確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓(xùn)練數(shù)據(jù)中的小目標(biāo)樣本C.使用更高分辨率的輸入圖像D.以上都是19、計(jì)算機(jī)視覺在體育賽事分析中的應(yīng)用可以提供更深入的比賽洞察。假設(shè)要分析一場足球比賽中球員的跑位和傳球模式,以下關(guān)于體育賽事計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰(zhàn)術(shù)和策略B.球員的速度和加速度等動態(tài)信息對比賽分析的價值不大C.結(jié)合深度學(xué)習(xí)和軌跡分析技術(shù)可以更有效地挖掘比賽中的關(guān)鍵模式和趨勢D.比賽場地的光照和攝像機(jī)視角對計(jì)算機(jī)視覺分析的結(jié)果沒有影響20、在一個基于計(jì)算機(jī)視覺的智能零售系統(tǒng)中,需要對顧客的購物行為進(jìn)行分析,如拿起商品、放回商品等動作的識別。以下哪種技術(shù)在動作識別方面可能發(fā)揮重要作用?()A.光流分析B.目標(biāo)跟蹤C(jī).動作捕捉D.以上都是21、在計(jì)算機(jī)視覺的人物姿態(tài)估計(jì)任務(wù)中,需要確定圖像中人物的關(guān)節(jié)位置和姿態(tài)。假設(shè)要開發(fā)一個用于健身應(yīng)用的姿態(tài)估計(jì)系統(tǒng),以下關(guān)于模型訓(xùn)練數(shù)據(jù)的獲取,哪一項(xiàng)是比較困難的?()A.從公開的數(shù)據(jù)集獲取大量的人物姿態(tài)圖像B.自己拍攝不同人群在各種健身動作下的圖像C.利用合成數(shù)據(jù)生成多樣化的人物姿態(tài)樣本D.從社交媒體上收集用戶分享的健身照片22、計(jì)算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,恢復(fù)清晰的圖像。假設(shè)要處理一張受到嚴(yán)重噪聲污染的天文圖像,以下關(guān)于去噪算法的選擇,哪一項(xiàng)是需要謹(jǐn)慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學(xué)習(xí)的去噪算法,如自編碼器C.只考慮去噪效果,不關(guān)心圖像細(xì)節(jié)的保留D.根據(jù)噪聲的類型和強(qiáng)度選擇合適的去噪算法23、當(dāng)進(jìn)行圖像的目標(biāo)計(jì)數(shù)任務(wù)時,假設(shè)要統(tǒng)計(jì)一張圖像中某種物體的數(shù)量,例如統(tǒng)計(jì)羊群中的羊的數(shù)量。以下哪種方法可能更準(zhǔn)確地完成計(jì)數(shù)任務(wù)?()A.基于深度學(xué)習(xí)的目標(biāo)計(jì)數(shù)模型B.手動逐個計(jì)數(shù)C.估計(jì)圖像中物體的平均大小,然后計(jì)算總面積來推算數(shù)量D.隨機(jī)猜測物體的數(shù)量24、計(jì)算機(jī)視覺在文物保護(hù)和修復(fù)中具有潛在應(yīng)用。假設(shè)要對一件受損的古代書畫進(jìn)行數(shù)字化修復(fù),以下關(guān)于計(jì)算機(jī)視覺在文物保護(hù)中的作用的描述,哪一項(xiàng)是不正確的?()A.可以通過圖像增強(qiáng)和去噪技術(shù)改善書畫的視覺效果B.利用圖像匹配和拼接技術(shù)還原殘缺的部分C.計(jì)算機(jī)視覺技術(shù)能夠完全恢復(fù)文物的原始狀態(tài),使其與未受損時一模一樣D.為文物修復(fù)專家提供輔助決策和參考依據(jù)25、在計(jì)算機(jī)視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說法,錯誤的是()A.可以通過生成對抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進(jìn)行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強(qiáng)和虛擬場景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實(shí)性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述圖像的色彩量化方法。2、(本題5分)描述計(jì)算機(jī)視覺在旱災(zāi)監(jiān)測中的應(yīng)用。3、(本題5分)簡述圖像的直方圖均衡化的原理。4、(本題5分)解釋計(jì)算機(jī)視覺在專利服務(wù)中的作用。三、分析題(本大題共5個小題,共25分)1、(本題5分)以谷歌的標(biāo)志演變?yōu)槔?,分析其設(shè)計(jì)變化背后的原因和意義。探討如何在保持品牌識別度的同時,適應(yīng)不斷變化的市場需求。2、(本題5分)以某品牌的社交媒體廣告為例,分析其在創(chuàng)意、文案、視覺效果等方面如何吸引用戶關(guān)注和互動,提升品牌影響力。3、(本題5分)探討某寵物用品品牌的產(chǎn)品包裝設(shè)計(jì),研究其如何通過可愛的形象、溫馨的色彩、實(shí)用的結(jié)構(gòu)滿足寵物

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論