




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆四川省綿陽涪城區(qū)中考數(shù)學仿真試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如果數(shù)據(jù)x1,x2,…,xn的方差是3,則另一組數(shù)據(jù)2x1,2x2,…,2xn的方差是()A.3 B.6 C.12 D.52.濕地旅游愛好者小明了解到鄂東南市水資源總量為42.4億立方米,其中42.4億用科學記數(shù)法可表示為()A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×1083.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.4.已知:如圖是y=ax2+2x﹣1的圖象,那么ax2+2x﹣1=0的根可能是下列哪幅圖中拋物線與直線的交點橫坐標()A. B.C. D.5.下列幾何體中,俯視圖為三角形的是()A. B. C. D.6.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛入立交橋,均以10m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應關系如圖2所示.結合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m7.下列實數(shù)中,結果最大的是()A.|﹣3| B.﹣(﹣π) C. D.38.計算3a2-a2的結果是()A.4a2B.3a2C.2a2D.39.在0,π,﹣3,0.6,這5個實數(shù)中,無理數(shù)的個數(shù)為()A.1個 B.2個 C.3個 D.4個10.小明調查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是()A.50,50 B.50,30 C.80,50 D.30,50二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,一個寬為2cm的刻度尺在圓形光盤上移動,當刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的半徑是____cm.12.如圖,在直角坐標系中,⊙A的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是______________.13.把多項式9x3﹣x分解因式的結果是_____.14.已知一塊等腰三角形鋼板的底邊長為60cm,腰長為50cm,能從這塊鋼板上截得得最大圓得半徑為________cm15.把16a3﹣ab2因式分解_____.16.不等式組的解集為,則的取值范圍為_____.三、解答題(共8題,共72分)17.(8分)某公司銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示AB進價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進A,B兩種品牌的教學設備各多少套?(2)通過市場調研,該公司決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過68萬元,問A種設備購進數(shù)量至多減少多少套?18.(8分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?19.(8分)鄂州某個體商戶購進某種電子產品的進價是50元/個,根據(jù)市場調研發(fā)現(xiàn)售價是80元/個時,每周可賣出160個,若銷售單價每個降低2元,則每周可多賣出20個.設銷售價格每個降低x元(x為偶數(shù)),每周銷售為y個.(1)直接寫出銷售量y個與降價x元之間的函數(shù)關系式;(2)設商戶每周獲得的利潤為W元,當銷售單價定為多少元時,每周銷售利潤最大,最大利潤是多少元?(3)若商戶計劃下周利潤不低于5200元的情況下,他至少要準備多少元進貨成本?20.(8分)“食品安全”受到全社會的廣泛關注,我區(qū)兼善中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為°;(2)請補全條形統(tǒng)計圖;(3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為2:3,現(xiàn)從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.21.(8分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C′.(1)求拋物線C的函數(shù)表達式;(2)若拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,求m的取值范圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C′上的對應點P′,設M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.22.(10分)如圖,已知直線AB經(jīng)過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標是.求這條直線的函數(shù)關系式及點B的坐標.在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在請說明理由.過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?23.(12分)某商場將每件進價為80元的某種商品按每件100元出售,一天可售出100件.后來經(jīng)過市場調查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.(1)若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應降價多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.求出y與x之間的函數(shù)關系式,并求當x取何值時,商場獲利潤最大?24.如圖,在平面直角坐標系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】【分析】根據(jù)題意,數(shù)據(jù)x1,x2,…,xn的平均數(shù)設為a,則數(shù)據(jù)2x1,2x2,…,2xn的平均數(shù)為2a,再根據(jù)方差公式進行計算:即可得到答案.【詳解】根據(jù)題意,數(shù)據(jù)x1,x2,…,xn的平均數(shù)設為a,則數(shù)據(jù)2x1,2x2,…,2xn的平均數(shù)為2a,根據(jù)方差公式:=3,則==4×=4×3=12,故選C.【點睛】本題主要考查了方差公式的運用,關鍵是根據(jù)題意得到平均數(shù)的變化,再正確運用方差公式進行計算即可.2、C【解析】
科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).【詳解】42.4億=4240000000,用科學記數(shù)法表示為:4.24×1.故選C.【點睛】考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.3、B【解析】
過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質得到=,求得AM=AF=,根據(jù)相似三角形的性質得到=,求得AN=AF=,即可得到結論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構造相似三角形是本題的關鍵,且求長度問題一般需用到勾股定理來解決,常作垂線4、C【解析】
由原拋物線與x軸的交點位于y軸的兩端,可排除A、D選項;B、方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,B不符合題意;C、拋物線y=ax2與直線y=﹣2x+1的交點,即交點的橫坐標為方程ax2+2x﹣1=0的根,C符合題意.此題得解.【詳解】∵拋物線y=ax2+2x﹣1與x軸的交點位于y軸的兩端,∴A、D選項不符合題意;B、∵方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,∴B選項不符合題意;C、圖中交點的橫坐標為方程ax2+2x﹣1=0的根(拋物線y=ax2與直線y=﹣2x+1的交點),∴C選項符合題意.故選:C.【點睛】本題考查了拋物線與x軸的交點以及二次函數(shù)的圖象與位置變化,逐一分析四個選項中的圖形是解題的關鍵.5、C【解析】
俯視圖是從上面所看到的圖形,可根據(jù)各幾何體的特點進行判斷.【詳解】A.圓錐的俯視圖是圓,中間有一點,故本選項不符合題意,B.幾何體的俯視圖是長方形,故本選項不符合題意,C.三棱柱的俯視圖是三角形,故本選項符合題意,D.圓臺的俯視圖是圓環(huán),故本選項不符合題意,故選C.【點睛】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關鍵.6、C【解析】分析:結合2個圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關鍵.7、B【解析】
正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,據(jù)此判斷即可.【詳解】根據(jù)實數(shù)比較大小的方法,可得<|-3|=3<-(-π),所以最大的數(shù)是:-(-π).故選B.【點睛】此題主要考查了實數(shù)大小比較的方法,及判斷無理數(shù)的范圍,要熟練掌握,解答此題的關鍵是要明確:正實數(shù)>0>負實數(shù),兩個負實數(shù)絕對值大的反而?。?、C【解析】【分析】根據(jù)合并同類項法則進行計算即可得.【詳解】3a2-a2=(3-1)a2=2a2,故選C.【點睛】本題考查了合并同類項,熟記合并同類項的法則是解題的關鍵.合并同類項就是把同類項的系數(shù)相加減,字母和字母的指數(shù)不變.9、B【解析】
分別根據(jù)無理數(shù)、有理數(shù)的定義逐一判斷即可得.【詳解】解:在0,π,-3,0.6,這5個實數(shù)中,無理數(shù)有π、這2個,故選B.【點睛】此題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).如π,,0.8080080008…(每兩個8之間依次多1個0)等形式.10、A【解析】分析:根據(jù)扇形統(tǒng)計圖分別求出購買課外書花費分別為100、80、50、30、20元的同學人數(shù),再根據(jù)眾數(shù)、中位數(shù)的定義即可求解.詳解:由扇形統(tǒng)計圖可知,購買課外書花費為100元的同學有:20×10%=2(人),購買課外書花費為80元的同學有:20×25%=5(人),購買課外書花費為50元的同學有:20×40%=8(人),購買課外書花費為30元的同學有:20×20%=4(人),購買課外書花費為20元的同學有:20×5%=1(人),20個數(shù)據(jù)為100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在這20位同學中,本學期計劃購買課外書的花費的眾數(shù)為50元,中位數(shù)為(50+50)÷2=50(元).故選A.點睛:本題考查了扇形統(tǒng)計圖,平均數(shù),中位數(shù)與眾數(shù),注意掌握通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.二、填空題(本大題共6個小題,每小題3分,共18分)11、5【解析】
本題先根據(jù)垂徑定理構造出直角三角形,然后在直角三角形中已知弦長和弓形高,根據(jù)勾股定理求出半徑,從而得解.【詳解】解:如圖,設圓心為O,弦為AB,切點為C.如圖所示.則AB=8cm,CD=2cm.
連接OC,交AB于D點.連接OA.
∵尺的對邊平行,光盤與外邊緣相切,
∴OC⊥AB.
∴AD=4cm.
設半徑為Rcm,則R2=42+(R-2)2,
解得R=5,
∴該光盤的半徑是5cm.
故答案為5【點睛】此題考查了切線的性質及垂徑定理,建立數(shù)學模型是關鍵.12、2【解析】分析:因為BP=,AB的長不變,當PA最小時切線長PB最小,所以點P是過點A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設直線與x軸,y軸分別交于D,C.∵A的坐標為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點睛:本題考查了切線的性質,全等三角形的判定性質,勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.13、x(3x+1)(3x﹣1)【解析】
提取公因式分解多項式,再根據(jù)平方差公式分解因式,從而得到答案.【詳解】9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案為x(3x+1)(3x-1).【點睛】本題主要考查了因式分解以及平方差公式,解本題的要點在于熟知多項式分解因式的相關方法.14、15【解析】如圖,等腰△ABC的內切圓⊙O是能從這塊鋼板上截得的最大圓,則由題意可知:AD和BF是△ABC的角平分線,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴AD=(cm),連接圓心O和切點E,則∠BEO=90°,又∵OD=OE,OB=OB,∴△BEO≌△BDO,∴BE=BD=30cm,∴AE=AB-BE=50-30=20cm,設OD=OE=x,則AO=40-x,在Rt△AOE中,由勾股定理可得:,解得:(cm).即能截得的最大圓的半徑為15cm.故答案為:15.點睛:(1)三角形中能夠裁剪出的最大的圓是這個三角形的內切圓;(2)若三角形的三邊長分別為a、b、c,面積為S,內切圓的半徑為r,則.15、a(4a+b)(4a﹣b)【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案為:a(4a+b)(4a-b).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.16、k≥1【解析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案為k≥1.三、解答題(共8題,共72分)17、(1)該公司計劃購進A種品牌的教學設備20套,購進B種品牌的教學設備30套;(2)A種品牌的教學設備購進數(shù)量至多減少1套.【解析】
(1)設該公司計劃購進A種品牌的教學設備x套,購進B種品牌的教學設備y套,根據(jù)花11萬元購進兩種設備銷售后可獲得利潤12萬元,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)設A種品牌的教學設備購進數(shù)量減少m套,則B種品牌的教學設備購進數(shù)量增加1.5m套,根據(jù)總價=單價×數(shù)量結合用于購進這兩種教學設備的總資金不超過18萬元,即可得出關于m的一元一次不等式,解之取其中最大的整數(shù)即可得出結論.【詳解】解:(1)設該公司計劃購進A種品牌的教學設備x套,購進B種品牌的教學設備y套,根據(jù)題意得:解得:.答:該公司計劃購進A種品牌的教學設備20套,購進B種品牌的教學設備30套.(2)設A種品牌的教學設備購進數(shù)量減少m套,則B種品牌的教學設備購進數(shù)量增加1.5m套,根據(jù)題意得:1.5(20﹣m)+1.2(30+1.5m)≤18,解得:m≤,∵m為整數(shù),∴m≤1.答:A種品牌的教學設備購進數(shù)量至多減少1套.【點睛】本題考查了二元一次方程組的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量間的關系,正確列出一元一次不等式.18、(1)2000;(2)2米【解析】
(1)設未知數(shù),根據(jù)題目中的的量關系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設該項綠化工程原計劃每天完成x米2,根據(jù)題意得:﹣=4解得:x=2000,經(jīng)檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據(jù)題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.19、(1)y=10x+160;(2)5280元;(3)10000元.【解析】試題分析:(1)根據(jù)題意,由售價是80元/個時,每周可賣出160個,若銷售單價每個降低2元,則每周可多賣出20個,可得銷售量y個與降價x元之間的函數(shù)關系式;(2)根據(jù)題意結合每周獲得的利潤W=銷量×每個的利潤,進而利用二次函數(shù)增減性求出答案;(3)根據(jù)題意,由利潤不低于5200元列出不等式,進一步得到銷售量的取值范圍,從而求出答案.試題解析:(1)依題意有:y=10x+160;(2)依題意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∵-10<0且x為偶數(shù),故當x=6或x=8時,即故當銷售單價定為74或72元時,每周銷售利潤最大,最大利潤是5280元;(3)依題意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,則200≤y≤260,200×50=10000(元).答:他至少要準備10000元進貨成本.點睛:此題主要考查了二次函數(shù)的應用以及一元二次方程的應用等知識,正確利用銷量×每個的利潤=W得出函數(shù)關系式是解題關鍵.20、(1)60,1°.(2)補圖見解析;(3)【解析】
(1)根據(jù)了解很少的人數(shù)和所占的百分百求出抽查的總人數(shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);(2)用調查的總人數(shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)根據(jù)題意先畫出樹狀圖,再根據(jù)概率公式即可得出答案.【詳解】(1)接受問卷調查的學生共有30÷50%=60(人),扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數(shù)有:60﹣15﹣30﹣10=5(人),補圖如下:(3)畫樹狀圖得:?∵共有20種等可能的結果,恰好抽到1個男生和1個女生的有12種情況,∴恰好抽到1個男生和1個女生的概率為=.【點睛】此題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,讀懂題意,根據(jù)題意求出總人數(shù)是解題的關鍵;概率=所求情況數(shù)與總情況數(shù)之比.21、(1);(2)2<m<;(1)m=6或m=﹣1.【解析】
(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問題;(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解不等式組即可解決問題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數(shù)法即可解決問題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系數(shù)法即可解決問題.【詳解】(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,∴拋物線C的函數(shù)表達式為.(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解得2<m<,∴滿足條件的m的取值范圍為2<m<.(1)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在上,∴,解得m=﹣1或﹣﹣1(舍棄),∴m=﹣1時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍棄),∴m=6時,四邊形PMP′N是正方形.綜上所述:m=6或m=﹣1時,四邊形PMP′N是正方形.22、(1)直線y=x+4,點B的坐標為(8,16);(2)點C的坐標為(﹣,0),(0,0),(6,0),(32,0);(3)當M的橫坐標為6時,MN+3PM的長度的最大值是1.【解析】
(1)首先求得點A的坐標,然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點坐標;(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標;(3)設M(a,a2),得MN=a2+1,然后根據(jù)點P與點M縱坐標相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標為-2,,A點的坐標為(-2,1),設直線的函數(shù)關系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,
當x=8時,y=16,
∴點B的坐標為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標為(-,0),(0,0),(6,0),(32,0)(3)設M(a,a2),則MN=,又∵點P與點M縱坐標相同,∴x+4=a2,∴x=,∴點P的橫坐標為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當a=6時,取最大值1,∴當M的橫坐標為6時,MN+3PM的長度的最大值是123、(1)商店經(jīng)營該商品一天要獲利潤2160元,則每件商品應降價2元或8元;(2)y=﹣10x2+100x+2000,當x=5時,商場獲取最大利潤為2250元.【解析】
(1)根據(jù)“總利潤=每件的利潤×每天的銷量”列方程求解可得;
(2)利用(1)中的相等關系列出函數(shù)解析式,配方成頂點式,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際交流項目合同業(yè)務流程
- 2025幼兒園安全教育與管理工作計劃
- 高二下學期生物實驗教學計劃
- 金融行業(yè)人力資源戰(zhàn)略計劃
- 服裝制造生產計劃管理流程
- 幼兒園美術教研活動交流計劃
- 2025年人教版五年級數(shù)學上冊學期總結計劃
- 班級菜園種植計劃與家庭參與機制
- 信息技術課外實踐活動計劃
- 二年級下冊校園安全知識教學計劃
- 焊線機技術員自學書
- 2024年共青團入團積極分子考試題庫(含答案)
- 強化學習 課件 第1章 強化學習概述
- 中外比較文學研究專題智慧樹知到期末考試答案2024年
- T-CACM 1229-2019 中醫(yī)骨傷科臨床診療指南 膝痹?。ㄏス顷P節(jié)炎)
- 房建工程監(jiān)理大綱范本(內容全面)
- 小學道德與法治教師培訓講座
- 《環(huán)境管理體系培訓》課件
- 綠色汽車修理技術研究
- 電源板生產QC工程圖
- 5Why分析法(經(jīng)典完整版)
評論
0/150
提交評論