




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
呂梁市重點中學(xué)2025屆數(shù)學(xué)八下期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列運算正確的是()A. B.(m2)3=m5 C.a(chǎn)2?a3=a5 D.(x+y)2=x2+y22.木匠有32米的木材,想要在花圃周圍做邊界,以下四種設(shè)計方案中,設(shè)計不合理的是()A. B. C. D.3.以下四個命題正確的是A.平行四邊形的四條邊相等B.矩形的對角線相等且互相垂直平分C.菱形的對角線相等D.一組對邊平行且相等的四邊形是平行四邊形4.如圖所示,過平行四邊形ABCD的對角線BD上一點M分別作平行四邊形兩邊的平行線EF與GH,那么圖中平行四邊形AEMG的面積與平行四邊形HCFM的面積的大小關(guān)系是()A. B.C. D.5.平面直角坐標(biāo)系中的四個點:,其中在同一個反比例函數(shù)圖象上的是()A.點和點 B.點和點C.點和點 D.點和點6.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個7.下列說法正確的是()A.全等的兩個圖形成中心對稱B.成中心對稱的兩個圖形必須能完全重合C.旋轉(zhuǎn)后能重合的兩個圖形成中心對稱D.成中心對稱的兩個圖形不一定全等8.正方形具有而菱形不一定具有的性質(zhì)是()A.四邊相等 B.對角線相等 C.對角線互相垂直 D.對角線互相平分9.下列各式是最簡二次根式的是()A. B. C. D.10.若反比例函數(shù)的圖象經(jīng)過點,則該反比例函數(shù)的圖象位于()A.第一、二象限 B.第二、三象限 C.第二、四象限 D.第一、三象限二、填空題(每小題3分,共24分)11.如圖,已知菱形ABCD的一個內(nèi)角∠BAD=80°,對角線AC,BD相交于點O,點E在AB上,且BE=BO,則∠EOA=___________°.12.?dāng)?shù)據(jù)101,98,102,100,99的方差是______.13.如圖,在矩形ABCD中,AC,BD相交于點O,AE平分∠BAD交BC于點E,若∠CAE=15°,則∠BOE的度數(shù)為____________.14.趙爽(約公元182~250年),我國歷史上著名的數(shù)學(xué)家與天文學(xué)家,他詳細解釋了《周髀算經(jīng)》中勾股定理,將勾股定理表述為:“勾股各自乘,并之為弦實.開方除之,即弦.”又給出了新的證明方法“趙爽弦圖”,巧妙地利用平面解析幾何面積法證明了勾股定理.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和中間一個小正方形拼成的一個大正方形,如果小正方形的面積為1,直角三角形較長直角邊長為4,則大正方形的面積為_____________________.15.如圖,為直角三角形,其中,則的長為__________________________.16.分解因式:x2y﹣y3=_____.17.在一只不透明的袋子中裝有2個紅球、3個綠球和5個白球,這些球除顏色外都相同,搖勻后,從袋子中任意摸出1個球,摸出白球可能性_________摸出紅球可能性.(填“等于”、“小于”或“大于”)18.解關(guān)于x的方程產(chǎn)生增根,則常數(shù)m的值等于________.三、解答題(共66分)19.(10分)如圖,要從一塊的白鐵皮零料上截出一塊矩形白鐵皮.已知,,要求截出的矩形的長與寬的比為,且較長邊在上,點分別在上,所截矩形的長和寬各是多少?20.(6分)如圖,在△ABC中,∠ACB=90°,BC=AC=6,D是AB邊上任意一點,連接CD,以CD為直角邊向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,連接BE.(1)求證:AD=BE;(2)當(dāng)△CDE的周長最小時,求CD的值;(3)求證:.21.(6分)如圖,在正方形ABCD中,E,F(xiàn)分別為AB,AD上的點,且AE=AF,點M是EF的中點,連結(jié)CM.(1)求證:CM⊥EF.(2)設(shè)正方形ABCD的邊長為2,若五邊形BCDEF的面積為,請直接寫出CM的長.22.(8分)如圖,已知是一次函數(shù)和反比例函數(shù)的圖象的兩個交點.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求△AOB的面積.23.(8分)如圖,在每個小正方形的邊長均為1個單位長度的方格紙中,有一個ABC和一點O,ABC的頂點和點O均與小正方形的頂點重合.(1)在方格紙中,將ABC向下平移5個單位長度得到A1B1C1,請畫出A1B1C1;(1)在方格紙中,將ABC繞點O旋轉(zhuǎn)180°得到A1B1C1,請畫出A1B1C1.(3)求出四邊形BCOC1的面積24.(8分)(已知:如圖1,矩形OACB的頂點A,B的坐標(biāo)分別是(6,0)、(0,10),點D是y軸上一點且坐標(biāo)為(0,2),點P從點A出發(fā)以每秒1個單位長度的速度沿線段AC﹣CB方向運動,到達點B時運動停止.(1)設(shè)點P運動時間為t,△BPD的面積為S,求S與t之間的函數(shù)關(guān)系式;(2)當(dāng)點P運動到線段CB上時(如圖2),將矩形OACB沿OP折疊,頂點B恰好落在邊AC上點B′位置,求此時點P坐標(biāo);(3)在點P運動過程中,是否存在△BPD為等腰三角形的情況?若存在,求出點P坐標(biāo);若不存在,請說明理由.25.(10分)正方形的對角線相交于點,點又是正方形的一個頂點,而且這兩個正方形的邊長相等.試證明:無論正方形繞點怎樣轉(zhuǎn)動,兩個正方形重疊部分的面積,總等于一個正方形面積的.26.(10分)如圖1,兩個全等的直角三角板ABC和DEF重疊在一起,其中∠ACB=∠DFE=90°,∠A=60°,AC=1,固定△ABC,將△DEF沿線段AB向右平移(即點D在線段AB上),回答下列問題:(1)如圖2,連結(jié)CF,四邊形ADFC一定是形.(2)連接DC,CF,F(xiàn)B,得到四邊形CDBF.①如圖3,當(dāng)點D移動到AB的中點時,四邊形CDBF是形.其理由?②在△DEF移動過程中,四邊形CDBF的形狀在不斷改變,但它的面積不變化,其面積為.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】A、=3,本選項錯誤;B、(m2)3=m6,本選項錯誤;C、a2?a3=a5,本選項正確;D、(x+y)2=x2+y2+2xy,本選項錯誤,故選C2、A【解析】
根據(jù)平移的性質(zhì)以及矩形的周長公式分別求出各圖形的周長即可得解.【詳解】A、∵垂線段最短,∴平行四邊形的另一邊一定大于6m,∵2(10+6)=32m,∴周長一定大于32m;B、周長=2(10+6)=32m;C、周長=2(10+6)=32m;D、周長=2(10+6)=32m;故選:A.【點睛】本題考查了矩形的周長,平行四邊形的周長公式,平移的性質(zhì),根據(jù)平移的性質(zhì)第三個圖形、第四個圖形的周長相當(dāng)于矩形的周長是解題的關(guān)鍵.3、D【解析】
根據(jù)平行四邊形的性質(zhì)與判定、矩形的性質(zhì)和菱形的性質(zhì)判斷即可.【詳解】解:A、菱形的四條邊相等,錯誤;B、矩形的對角線相等且平分,錯誤;C、菱形的對角線垂直,錯誤;D、一組對邊平行且相等的四邊形是平行四邊形,正確.故選D.【點睛】本題考查了命題與定理的知識,解題的關(guān)鍵是了解平行四邊形的性質(zhì)、矩形的性質(zhì)和菱形的性質(zhì),難度一般.4、A【解析】
根據(jù)平行四邊形的性質(zhì)和判定得出平行四邊形GBEP、GPFD,證△ABD≌△CDB,得出△ABD和△CDB的面積相等;同理得出△BEM和△MHB的面積相等,△GMD和△FDM的面積相等,相減即可求出答案.【詳解】∵四邊形ABCD是平行四邊形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四邊形HBEM、GMFD是平行四邊形,在△ABD和△CDB中;∵,∴△ABD≌△CDB(SSS),即△ABD和△CDB的面積相等;同理△BEM和△MHB的面積相等,△GMD和△FDM的面積相等,故四邊形AEMG和四邊形HCFM的面積相等,即.故選:A.【點睛】此題考查平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),解題關(guān)鍵在于得出△ABD≌△CDB5、B【解析】
分別將每個點的橫、縱坐標(biāo)相乘,得數(shù)相同的兩個點在同一反比例函數(shù)圖象上.【詳解】解:∵∴點和點兩個點在同一反比例函數(shù)圖象上.故選:B.【點睛】本題考查的知識點是反比例函數(shù)圖象上點的坐標(biāo)特征,屬于基礎(chǔ)題目,掌握反比例函數(shù)解析式是解此題的關(guān)鍵.6、C【解析】
試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結(jié)論正確的是①②③④共4個.故選C.【點睛】考點:1、矩形的性質(zhì);2、全等三角形的判定與性質(zhì);3、角平分線的性質(zhì);4、等腰三角形的判定與性質(zhì)7、B【解析】
根據(jù)中心對稱圖形的概念,即可求解.【詳解】解:A、成中心對稱的兩個圖形全等,但全等的兩個圖形不一定成中心對稱,故錯誤;B、成中心對稱的兩個圖形必須能完全重合,正確;C、旋轉(zhuǎn)180°能重合的兩個圖形成中心對稱,故錯誤;D、成中心對稱的兩個圖形一定全等,故錯誤.故選:B.【點睛】本題考查中心對稱圖形的概念:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.8、B【解析】
觀察四個選項,分別涉及了四條邊和對角線,我們應(yīng)對照正方形和菱形邊及對角線的性質(zhì),找出不同即可.【詳解】正方形和菱形的四條邊均相等,每條對角線均平分一組對角,正方形兩條對角線相等且互相垂直平分,菱形對角線互相垂直且平分,但不相等.故選B.【點睛】本題考查了正方形和菱形性質(zhì)的知識,解決本題的關(guān)鍵是熟練掌握正方形和菱形的性質(zhì).9、C【解析】
根據(jù)最簡二次根式的定義對各選項分析判斷利用排除法求解.【詳解】解:A、不是最簡二次根式,錯誤;B、不是最簡二次根式,錯誤;C、是最簡二次根式,正確;D、不是最簡二次根式,錯誤;故選:C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式.10、D【解析】
首先將點坐標(biāo)代入函數(shù)解析式,即可得出的值,即可判定反比例函數(shù)所處的象限.【詳解】解:∵反比例函數(shù)圖象經(jīng)過點,∴∴∴該反比例函數(shù)圖像位于第一、三象限,故答案為D.【點睛】此題主要考查利用點坐標(biāo)求出反比例函數(shù)解析式,即可判定其所在象限.二、填空題(每小題3分,共24分)11、1【解析】
根據(jù)∠BAD和菱形鄰角和為180°的性質(zhì)可以求∠ABC的值,根據(jù)菱形對角線即角平分線的性質(zhì)可以求得∠ABO的值,又由BE=BO可得∠BEO=∠BOE,根據(jù)∠BOE和菱形對角線互相垂直的性質(zhì)可以求得∠EOA的大?。驹斀狻拷猓骸摺螧AD=80°,菱形鄰角和為180°
∴∠ABC=100°,
∵菱形對角線即角平分線
∴∠ABO=50°,
∵BE=BO
∴∠BEO=∠BOE==65°,
∵菱形對角線互相垂直
∴∠AOB=90°,
∴∠AOE=90°-65°=1°,
故答案為1.【點睛】本題考查了菱形對角線互相垂直平分且平分一組對角的性質(zhì),考查了等腰三角形底角相等的性質(zhì),本題中正確的計算∠BEO=∠BOE=65°是解題的關(guān)鍵.12、1【解析】
先求平均數(shù),再根據(jù)方差公式求方差.【詳解】平均數(shù).x=(98+99+100+101+101)=100,
方差s1=[(98-100)1+(99-100)1+(100-100)1+(101-100)1+(101-100)1]=1.故答案為1【點睛】本題考核知識點:方差.解題關(guān)鍵點:熟記方差公式.13、【解析】
由矩形ABCD,得到OA=OB,根據(jù)AE平分∠BAD,得到等邊三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度數(shù),根據(jù)平行線的性質(zhì)和等角對等邊得到OB=BE,根據(jù)三角形的內(nèi)角和定理即可求出答案.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°-15°=30°,∠BAC=60°,∴△BAO是等邊三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°-60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=故答案為75°.【點睛】本題主要考查了三角形的內(nèi)角和定理,矩形的性質(zhì),等邊三角形的性質(zhì)和判定,平行線的性質(zhì),角平分線的性質(zhì),等腰三角形的判定等知識點,解此題的關(guān)鍵是求出∠OBC的度數(shù)和求OB=BE.14、1【解析】
觀察圖形可知,小正方形的面積為1,可得出小正方形的邊長是1,進而求出直角三角形較短直角邊長,再利用勾股定理得出大正方形的邊長,進而求出答案.【詳解】解:∵小正方形的面積為1,∴小正方形的邊長是1,
∵直角三角形較長直角邊長為4,∴直角三角形較短直角邊長為:4-1=3,∴大正方形的邊長為:,∴大正方形的面積為:52=1,故答案為:1.【點睛】本題考查勾股定理,解題的關(guān)鍵是熟練運用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.15、.【解析】
由∠B=90°,∠BAD=45°,根據(jù)直角三角形兩銳角互余求得∠BDA=45°,因此AB=BD,由∠DAC=15°,根據(jù)三角形外角性質(zhì)可求得∠C=30°,由AC=2,根據(jù)直角三角形中30°的角所對的直角邊等于斜邊的一半,求得AB=1,即BD=1,根據(jù)勾股定理求得BC=,從而得到CD的長.【詳解】解:∵∠B=90°,∠BAD=45°,∴∠BDA=45°,AB=BD,∵∠DAC=15°,∴∠C=30°,∴AB=BD=AC=×2=1,∴BC===,∴CD=BC-BD=-1.故答案為-1.【點睛】本題考查了直角三角形兩銳角互余的性質(zhì),30°的角所對的直角邊等于斜邊的一半,勾股定理等知識.16、y(x+y)(x﹣y).【解析】試題分析:先提取公因式y(tǒng),再利用平方差公式進行二次分解.解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案為y(x+y)(x﹣y).17、大于【解析】
分別求出摸到白球與摸到紅球的概率,比較這兩個概率即可得答案.【詳解】∵共有球:2+3+5=10個,∴P白球==,P紅球==,∵>,∴摸出白球可能性大于摸出紅球可能性.故答案為:大于【點睛】本題考查概率的求法,概率=所求情況數(shù)與總情況數(shù)之比;熟練掌握概率公式是解題關(guān)鍵.18、【解析】
先通過去分母,將分式方程化為整式方程,再根據(jù)增根的定義得出x的值,然后將其代入整式方程即可.【詳解】兩邊同乘以得,由增根的定義得,將代入得,故答案為:.【點睛】本題考查了解分式方程、增根的定義,掌握理解增根的定義是解題關(guān)鍵.三、解答題(共66分)19、所截矩形的長是,寬是【解析】
過點作交于,交于,先利用勾股定理求出BC,易知,從而求出AN,又易證,,設(shè),則,列出方程解出x即可【詳解】解:過點作交于,交于四邊形是矩形設(shè),則解得:答:所截矩形的長是,寬是.【點睛】本題主要考查相似三角形的應(yīng)用,在實際問題中抽象出幾何圖形,本題解題關(guān)鍵在于能夠找到相似三角形列出方程20、(1)見解析;(1);(3)見解析【解析】
(1)先判斷出∠ACD=∠BCE,得出△ADC≌△CBE(SAS),即可得出結(jié)論;
(1)先判斷出DE=CD,進而得出△CDE的周長為(1+)CD,進而判斷出當(dāng)CD⊥AB時,CD最短,即可得出結(jié)論;
(3)先判斷出∠A=∠ABC=45°,進而判斷出∠DBE=90°,再用勾股定理得出BE1+DB1=DE1,即可得出結(jié)論.【詳解】證明:(1)∵∠ACB=∠DCE=90°,∴∠1+∠3=90°,∠1+∠3=90°,∴∠1=∠1.∵BC=AC,CD=CE,∴△CAD≌△CBE,∴AD=BE.(1)∵∠DCE=90°,CD=CE.∴由勾股定理可得CD=.∴△CDE周長等于CD+CE+DE==.∴當(dāng)CD最小時△CDE周長最?。纱咕€段最短得,當(dāng)CD⊥AB時,△CDE的周長最?。連C=AC=6,∠ACB=90°,∴AB=6.此時AD=CD=.∴當(dāng)CD時,△CDE的周長最小.(3)由(1)易知AD=BE,∠A=∠CBA=∠CBE=45°,∴∠DBE=∠CBE+∠CBA=90°.在Rt△DBE中:.在Rt△CDE中:.∴.【點睛】此題是三角形綜合題,主要考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,判斷出CD⊥AB時,CD最短是解本題的關(guān)鍵.21、(1)見解析;(2)【解析】
(1)連結(jié)CE,CF,知道AE=AF,可得CE=CF,即可證明;(2)正方形ABCD的邊長為2,若五邊形BCDEF的面積為,則可算出△AEF的面積,從而求出CM【詳解】(1)證明:連結(jié)CE,CF∵四邊形ABCD是正方形∴∠B=∠D=90°,BC=CDAB=AD又AE=AF∴BE=DF∴△CBE≌△CDF(SAS)∴CE=CF而M是EF中點∴CM⊥EF(等腰三角形三線合一)(2)連接AM,由(1)可知,AMC三點共線,正方形ABCD的邊長為2,若五邊形BCDEF的面積為,則△AEF的面積為,則AC=,AE=AF=,∴EF=,AM=,則CM=-=【點睛】熟練掌握正方形內(nèi)邊角的轉(zhuǎn)換計算和輔助線作法是解決本題的關(guān)鍵22、(1)反比例函數(shù)解析式為,一函數(shù)解析式為;(2).【解析】
(1)根據(jù)是一次函數(shù)與反比例函數(shù)的圖像的兩個交點,可以求得m的值,進而求得n的值,即可解答本題;(2)根據(jù)函數(shù)圖像和(1)中一次函數(shù)的解析式可以求得點C的坐標(biāo),從而根據(jù)可以求得的面積.【詳解】解:(1)是一次函數(shù)的圖像與反比例函數(shù)的圖像的兩個交點,得,,,得,∴點,,解得,∴一函數(shù)解析式為,即反比例函數(shù)解析式為,一函數(shù)解析式為;(2)設(shè)直線與y軸的交點為C,當(dāng)時,,∴點C的坐標(biāo)是,∵點,點,.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.23、(1)見解析;(1)見解析;(3)11.5【解析】
無論是何種變換都需先找出各關(guān)鍵點的對應(yīng)點,然后順次連接即可.【詳解】解:(1)如圖:分別將A,B,C三點向下平移5各單位,得到A1,B1,C1,然后再順次連接即可。(1)如圖:分別將A,B,C三點繞點O旋轉(zhuǎn)180°得到A1,B1,C1,然后再順次連接即可。(3)四邊形BCOC1的面積=△BCC1的面積+△COC1的面積=×5×4+×5×1=11.5【點睛】本題考查了圖形的平移和旋轉(zhuǎn)以及圖形的面積,其中關(guān)鍵是作出各個關(guān)鍵點的對應(yīng)點.24、(1)S=(2)(3)存在,(6,6)或,【解析】
(1)當(dāng)P在AC段時,△BPD的底BD與高為固定值,求出此時面積;當(dāng)P在BC段時,底邊BD為固定值,用t表示出高,即可列出S與t的關(guān)系式;
(2)當(dāng)點B的對應(yīng)點B′恰好落在AC邊上時,設(shè)P(m,10),則PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此時P坐標(biāo);
(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標(biāo)性質(zhì)求出P坐標(biāo)即可.【詳解】解:(1)∵A,B的坐標(biāo)分別是(6,0)、(0,10),
∴OA=6,OB=10,
當(dāng)點P在線段AC上時,OD=2,BD=OB-OD=10-2=8,高為6,
∴S=×8×6=24;
當(dāng)點P在線段BC上時,BD=8,高為6+10-t=16-t,
∴S=×8×(16-t)=-4t+64;
∴S與t之間的函數(shù)關(guān)系式為:;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年軟考網(wǎng)絡(luò)管理員考試復(fù)習(xí)指導(dǎo)試題及答案
- 2025年網(wǎng)絡(luò)管理員考試心得試題及答案
- 第二次月考提升卷(Unit 4、Unit 5)(含答案)-2024-2025學(xué)年人教精通版英語六年級下冊
- 學(xué)習(xí)云原生技術(shù)考試考題及答案解析
- 2025合同范本 租房協(xié)議書
- 2025法學(xué)概論考試的常見問題及試題及答案
- 學(xué)期重點項目與計劃推進
- 保安人員心理素質(zhì)提升的實踐方案計劃
- 2025帶薪休假合同「下載」
- 信息處理技術(shù)員商務(wù)溝通題及答案
- 中國卒中學(xué)會急性缺血性卒中再灌注治療指南(2024)解讀
- 守護生態(tài)平衡 共享多彩世界 課件 -2025年高中生物多樣性日主題教育
- GA/T 2161-2024法庭科學(xué)非法集資類案件資金數(shù)據(jù)分析規(guī)程
- 2025-2030中國黃金珠寶首飾行業(yè)市場深度發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025屆青海省西寧市高考第一次模擬預(yù)測地理試題(原卷版+解析版)
- 俗世奇人試題及答案
- 煤炭工業(yè)建筑結(jié)構(gòu)設(shè)計標(biāo)準(zhǔn)
- 【化學(xué)試卷+答案】廣東省茂名市2025年高三年級第二次綜合測試(茂名二模)
- 急救中心患者轉(zhuǎn)運流程標(biāo)準(zhǔn)化指南
- 《2025急性冠脈綜合征患者管理指南》解讀
- 2025年內(nèi)蒙古自治區(qū)中考一模語文試題(原卷版+解析版)
評論
0/150
提交評論